In traditional budgeting environments planning demand and thus revenue terjemahan - In traditional budgeting environments planning demand and thus revenue Bahasa Indonesia Bagaimana mengatakan

In traditional budgeting environmen

In traditional budgeting environments planning demand and thus revenues, has typically been a semi manual process. For example, an insurance company might model premium income by starting with policies currently in force, estimating attrition rates, forecasting new policies due to marketing efforts, and adding in the impact of increased or decreased premiums, in order to come up with projected policy volumes and premium income. This process relies upon the subjective judgment of someone who is reasonably expert in the particular insurance market.
Another example might be a retailer where a purchasing managers estimates demand volume at a product group/distribution center level. This demand plan must then be pushed down to a store/SKU level by some mechanism for consumption by inventory management systems.The disadvantages of these manual forecasting techniques are significant. Manual estimation of demand at this granular level is error prone and laborious. Even though, in the insurance example quoted above, an underwriter might use historical attrition percentages and other historical data to help project volumes, there remains a significant degree of human judgment in the process. In the case of the retailer, ideally the planner would estimate demand volumes at the store/SKU level, but in practice the amount of effort required for manual forecasting makes this impractical.
The better approach is to predict demand using a data driven approach. This technique, called predictive analytics, is gaining popularity. In the case of retail demand, historical data can be analyzed to detect seasonal patterns, product lifecycles and the effect of causal variables such as weather, promotions, pricing, etc. Modern software makes what would have been an impossible task a few years ago into an exercise that anybody can do with the right software.
If we combine this predictive analytics capability with a financial modeling tool it becomes possible to predict demand and model a full profit and loss account, balance sheet and cash flow. Imagine a world where the retail demand planner can increase marketing spend in a region while lowering some prices and immediately see the impact on demand as well as the impact on the bottom line.
IBM SPSS modeler is a predictive modeling tool which integrates with IBM Cognos TM1. The integration between these two tools allows demand planning and financial modeling, all in one single environment.
Want to learn more about how QueBIT’s integrated Demand Planning solution maximizes revenues through forecast accuracy while controlling costs. Contact our team to learn more
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
In traditional budgeting environments planning demand and thus revenues, has typically been a semi manual process. For example, an insurance company might model premium income by starting with policies currently in force, estimating attrition rates, forecasting new policies due to marketing efforts, and adding in the impact of increased or decreased premiums, in order to come up with projected policy volumes and premium income. This process relies upon the subjective judgment of someone who is reasonably expert in the particular insurance market.Another example might be a retailer where a purchasing managers estimates demand volume at a product group/distribution center level. This demand plan must then be pushed down to a store/SKU level by some mechanism for consumption by inventory management systems.The disadvantages of these manual forecasting techniques are significant. Manual estimation of demand at this granular level is error prone and laborious. Even though, in the insurance example quoted above, an underwriter might use historical attrition percentages and other historical data to help project volumes, there remains a significant degree of human judgment in the process. In the case of the retailer, ideally the planner would estimate demand volumes at the store/SKU level, but in practice the amount of effort required for manual forecasting makes this impractical.The better approach is to predict demand using a data driven approach. This technique, called predictive analytics, is gaining popularity. In the case of retail demand, historical data can be analyzed to detect seasonal patterns, product lifecycles and the effect of causal variables such as weather, promotions, pricing, etc. Modern software makes what would have been an impossible task a few years ago into an exercise that anybody can do with the right software.If we combine this predictive analytics capability with a financial modeling tool it becomes possible to predict demand and model a full profit and loss account, balance sheet and cash flow. Imagine a world where the retail demand planner can increase marketing spend in a region while lowering some prices and immediately see the impact on demand as well as the impact on the bottom line.IBM SPSS modeler is a predictive modeling tool which integrates with IBM Cognos TM1. The integration between these two tools allows demand planning and financial modeling, all in one single environment.Want to learn more about how QueBIT’s integrated Demand Planning solution maximizes revenues through forecast accuracy while controlling costs. Contact our team to learn more
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
Dalam lingkungan penganggaran tradisional perencanaan permintaan dan dengan demikian pendapatan, telah biasanya merupakan proses semi manual. Sebagai contoh, sebuah perusahaan asuransi mungkin memodelkan pendapatan premi dengan memulai dengan kebijakan saat ini berlaku, memperkirakan tingkat putus sekolah, peramalan kebijakan baru karena upaya pemasaran, dan menambahkan dalam dampak peningkatan atau penurunan premi, dalam rangka untuk datang dengan volume kebijakan diproyeksikan dan pendapatan premi. Proses ini bergantung pada penilaian subjektif seseorang yang cukup ahli dalam pasar asuransi tertentu.
Contoh lain mungkin pengecer di mana manajer pembelian perkiraan volume yang permintaan pada tingkat pusat kelompok produk / distribusi. Rencana Tuntutan ini kemudian harus didorong ke toko tingkat / SKU oleh beberapa mekanisme untuk dikonsumsi oleh kelemahan manajemen persediaan systems.The dari teknik-teknik peramalan pengguna yang signifikan. Estimasi pengguna permintaan di tingkat granular ini rawan kesalahan dan melelahkan. Meskipun, dalam contoh asuransi yang dikutip di atas, underwriter mungkin menggunakan persentase gesekan historis dan data historis lainnya untuk membantu volume proyek, tetap ada tingkat signifikan penilaian manusia dalam proses. Dalam kasus pengecer, idealnya perencana akan memperkirakan volume permintaan di toko tingkat / SKU, tetapi dalam prakteknya jumlah usaha yang diperlukan untuk peramalan panduan membuat ini tidak praktis.
Pendekatan yang lebih baik adalah untuk memprediksi permintaan menggunakan pendekatan data driven. Teknik ini, yang disebut analisis prediktif, adalah mendapatkan popularitas. Dalam kasus permintaan ritel, data historis dapat dianalisa untuk mendeteksi pola musiman, siklus hidup produk dan pengaruh variabel kausal seperti cuaca, promosi, harga, dll software modern membuat apa yang akan menjadi tugas yang mustahil beberapa tahun lalu menjadi latihan yang orang bisa lakukan dengan perangkat lunak yang tepat.
Jika kita menggabungkan kemampuan analisis prediktif ini dengan alat pemodelan keuangan menjadi mungkin untuk memprediksi permintaan dan model keuntungan penuh dan rugi, neraca dan arus kas. Bayangkan sebuah dunia di mana perencana permintaan ritel dapat meningkatkan pengeluaran pemasaran di suatu daerah sambil menurunkan beberapa harga dan segera melihat dampak pada permintaan serta berdampak pada bottom line.
IBM SPSS modeler adalah alat pemodelan prediktif yang terintegrasi dengan IBM Cognos TM1 . Integrasi antara dua alat ini memungkinkan perencanaan kebutuhan dan pemodelan keuangan, semua dalam satu lingkungan tunggal.
Ingin mempelajari lebih lanjut tentang bagaimana solusi terintegrasi Perencanaan Permintaan QueBIT ini memaksimalkan pendapatan melalui akurasi perkiraan sementara mengendalikan biaya. Hubungi tim kami untuk mempelajari lebih lanjut
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2025 I Love Translation. All reserved.

E-mail: