Production of an unpredictable mixture of algae is greatly caused by a terjemahan - Production of an unpredictable mixture of algae is greatly caused by a Bahasa Indonesia Bagaimana mengatakan

Production of an unpredictable mixt

Production of an unpredictable mixture of algae is greatly caused by application of both inorganic and organic fertilizers and is of great importance in managing the biological productivity in a fishpond. The number of phytoplankton in fertilized pond may be found more than
10 times higher than in unfertilized pond (Boyd, 1982). It
is evident from the phytoplankton data obtained during the present experiment that the average abundance of total phytoplankton was significantly higher in treatment ponds receiving poultry manure-urea-TSP (T-2) than that in ponds receiving cow manure-urea-TSP (T-1) (Table 3). Mean variations in phytoplankton production was higher in pond water under T-2 throughout the experimental period, suggesting that the fertilization effects of poultry manure in supplying nutrients in water column is better than that of cow manure. Dhawan and Toor (1989) reported that total phytoplankton were significantly higher in the ponds treated with poultry droppings alone and in combination with cow dung than in the ponds with cow dung alone and in combination with supplementary diet, indicating the fertilization superiority of poultry manure over the cow manure. Total phytoplankton population growth in the ponds treated with poultry manure alone has been higher due to the presence of sufficient P04-P and NO -N release from the manure in water (Varghese and Shanker, 1981; Sood, 1984)
Among phytoplankton population, Chlorophyceae was found to be the most dominant planktonic group both in terms of number of genera (19) and percentage (47-49%), followed by Cyanophyceae (8 and 24-28%) and Bacillariophyceae (7 and 14-15%). Euglenophyceae showed the poorest abundance in both treatments. However, between the treatments and phytoplankton groups, Euglenophyceae was observed in higher percentage of 68%, followed by Bacillariophyceae of 62%, Chlorophyceae of 58% and Cyanophyceae of 55% in T-2 (Fig. 1). Almost similar order of dominance in different groups of phytoplankton has been reported in ponds treated with poultry and cow manure treated ponds (Dhawan and Toor, 1989) and also in both organic and inorganic fertilized fish ponds in the vicinity of BAU (Dewan, 1973; Ahmed et al., 1997; Wahab et al., 1994). Dissimilar to the findings of the present study and above authors, diversity among the phytoplankton in cow manure treated ponds was found least dominated by Chlorophyceae and Cyanophyceae (Noriega-Curtis, 1979).
Among phytoplankton genera, Fragillaria, Navicula, Synedra, Actnestrum, Chlorella, Pediastrum, Tetraedron, Chlorococcus, Chroococcus, Merismopedia, Oscillatoria, Euglena, Phacus and Trachelomonas were persistently present in all ponds during the present study
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
Produksi campuran tak terduga ganggang sangat disebabkan oleh penggunaan pupuk organik dan anorganik dan sangat penting dalam mengelola produktivitas hayati di kolam ikan. Jumlah fitoplankton di dibuahi kolam dapat ditemukan lebih
10 kali lebih tinggi daripada di sel kolam (Boyd, 1982). Itu
jelas dari fitoplankton data yang diperoleh selama percobaan hadir bahwa kelimpahan rata-rata total fitoplankton signifikan lebih tinggi di kolam-kolam pengobatan yang menerima unggas pupuk-urea-sdt (T-2) daripada yang di kolam yang menerima sapi pupuk urea-sdt (T-1) (Tabel 3). Berarti variasi dalam produksi fitoplankton adalah lebih tinggi di kolam air di bawah T-2 sepanjang periode percobaan, menyarankan bahwa efek pemupukan unggas pupuk kandang dalam memasok nutrisi dalam kolom air lebih baik daripada kotoran sapi. Dhawan dan Toor (1989) melaporkan bahwa total fitoplankton secara signifikan lebih tinggi di kolam diperlakukan dengan kotoran unggas sendirian dan dalam kombinasi dengan kotoran sapi daripada di kolam dengan sapi kotoran sendirian dan dalam kombinasi dengan diet tambahan, menunjukkan keunggulan pemupukan unggas pupuk lebih dari kotoran sapi. Pertumbuhan populasi total fitoplankton di kolam diperlakukan dengan unggas pupuk sendiri telah lebih tinggi karena adanya P04-P cukup dan tidak ada rilis -N dari pupuk di dalam air (Varghese dan Shanker, 1981; Sood, 1984)
di antara penduduk fitoplankton, Biologi ditemukan untuk menjadi paling dominan planktonik kelompok kedua dalam hal jumlah genera (19) dan persentase (47-49%), diikuti oleh Cyanophyceae (8 dan 24-28%) dan Diatom (7 dan 14-15%). Euglenophyceae menunjukkan kelimpahan termiskin di kedua perawatan. Namun, antara perawatan dan kelompok-kelompok fitoplankton, Euglenophyceae diamati pada persentase lebih tinggi dari 68%, diikuti oleh Diatom 62%, botani sebesar 58% dan Cyanophyceae % 55 di T-2 (Fig. 1). Hampir mirip urutan dominasi dalam kelompok yang berbeda fitoplankton telah dilaporkan dalam kolam diperlakukan dengan unggas dan kotoran sapi diperlakukan kolam (Dhawan dan Toor, 1989) dan juga dalam organik dan anorganik dibuahi kolam ikan di sekitar BAU (Dewan, 1973; Ahmed et al., 1997; Wahab et al, 1994). Berbeda temuan penelitian ini dan di atas penulis, perbedaan di antara fitoplankton di kotoran sapi diperlakukan kolam ditemukan setidaknya didominasi oleh botani dan Cyanophyceae (Noriega-Curtis, 1979).
antara fitoplankton genera, Fragillaria, Navicula, Synedra, Actnestrum, Chlorella, Pediastrum, Tetraedron, Chlorococcus, Chroococcus, Merismopedia, Oscillatoria, Euglena, Phacus dan Trachelomonas yang terus-menerus hadir di semua kolam selama studi hadir
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
Production of an unpredictable mixture of algae is greatly caused by application of both inorganic and organic fertilizers and is of great importance in managing the biological productivity in a fishpond. The number of phytoplankton in fertilized pond may be found more than
10 times higher than in unfertilized pond (Boyd, 1982). It
is evident from the phytoplankton data obtained during the present experiment that the average abundance of total phytoplankton was significantly higher in treatment ponds receiving poultry manure-urea-TSP (T-2) than that in ponds receiving cow manure-urea-TSP (T-1) (Table 3). Mean variations in phytoplankton production was higher in pond water under T-2 throughout the experimental period, suggesting that the fertilization effects of poultry manure in supplying nutrients in water column is better than that of cow manure. Dhawan and Toor (1989) reported that total phytoplankton were significantly higher in the ponds treated with poultry droppings alone and in combination with cow dung than in the ponds with cow dung alone and in combination with supplementary diet, indicating the fertilization superiority of poultry manure over the cow manure. Total phytoplankton population growth in the ponds treated with poultry manure alone has been higher due to the presence of sufficient P04-P and NO -N release from the manure in water (Varghese and Shanker, 1981; Sood, 1984)
Among phytoplankton population, Chlorophyceae was found to be the most dominant planktonic group both in terms of number of genera (19) and percentage (47-49%), followed by Cyanophyceae (8 and 24-28%) and Bacillariophyceae (7 and 14-15%). Euglenophyceae showed the poorest abundance in both treatments. However, between the treatments and phytoplankton groups, Euglenophyceae was observed in higher percentage of 68%, followed by Bacillariophyceae of 62%, Chlorophyceae of 58% and Cyanophyceae of 55% in T-2 (Fig. 1). Almost similar order of dominance in different groups of phytoplankton has been reported in ponds treated with poultry and cow manure treated ponds (Dhawan and Toor, 1989) and also in both organic and inorganic fertilized fish ponds in the vicinity of BAU (Dewan, 1973; Ahmed et al., 1997; Wahab et al., 1994). Dissimilar to the findings of the present study and above authors, diversity among the phytoplankton in cow manure treated ponds was found least dominated by Chlorophyceae and Cyanophyceae (Noriega-Curtis, 1979).
Among phytoplankton genera, Fragillaria, Navicula, Synedra, Actnestrum, Chlorella, Pediastrum, Tetraedron, Chlorococcus, Chroococcus, Merismopedia, Oscillatoria, Euglena, Phacus and Trachelomonas were persistently present in all ponds during the present study
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2024 I Love Translation. All reserved.

E-mail: