Data CondensationData condensation refers to the process of selecting, terjemahan - Data CondensationData condensation refers to the process of selecting, Bahasa Indonesia Bagaimana mengatakan

Data CondensationData condensation

Data Condensation
Data condensation refers to the process of selecting, focusing, simplifying,
abstracting, and/or transforming the data that appear in the full corpus (body) of
written- up fild notes, interview transcripts, documents, and other empirical materials.
By condensing, we’re making data stronger. (We stay away from data reduction as a term
because that implies we’re weakening or losing something in the process.)
As we see it, data condensation occurs continuously throughout the life of any
qualitatively oriented project. Even before the data are actually collected, anticipatory
data condensation is occurring as the researcher decides (often without full awareness)
which conceptual framework, which cases, which research questions, and which
data collection approaches to choose. As data collection proceeds, further episodes of
data condensation occur: writing summaries, coding, developing themes, generating
categories, and writing analytic memos. The data condensing/transforming process
continues after the fildwork is over, until a fial report is completed.
Data condensation is not something separate from analysis. It is a part of analysis.
The researcher’s decisions—which data chunks to code and which to pull out, which
category labels best summarize a number of chunks, which evolving story to tell—are
all analytic choices. Data condensation is a form of analysis that sharpens, sorts, focuses,
discards, and organizes data in such a way that “fial” conclusions can be drawn and
verifid.
By data condensation, we do not necessarily mean quantifiation. Qualitative data
can be transformed in many ways: through selection, through summary or paraphrase,
through being subsumed in a larger pattern, and so on. Occasionally, it may be helpful
to convert the data into magnitudes (e.g., the analyst decides that the program being
looked at has a “high” or “low” degree of effectiveness), but this is not always necessary.
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
Data Condensation
Data condensation refers to the process of selecting, focusing, simplifying,
abstracting, and/or transforming the data that appear in the full corpus (body) of
written- up fild notes, interview transcripts, documents, and other empirical materials.
By condensing, we’re making data stronger. (We stay away from data reduction as a term
because that implies we’re weakening or losing something in the process.)
As we see it, data condensation occurs continuously throughout the life of any
qualitatively oriented project. Even before the data are actually collected, anticipatory
data condensation is occurring as the researcher decides (often without full awareness)
which conceptual framework, which cases, which research questions, and which
data collection approaches to choose. As data collection proceeds, further episodes of
data condensation occur: writing summaries, coding, developing themes, generating
categories, and writing analytic memos. The data condensing/transforming process
continues after the fildwork is over, until a fial report is completed.
Data condensation is not something separate from analysis. It is a part of analysis.
The researcher’s decisions—which data chunks to code and which to pull out, which
category labels best summarize a number of chunks, which evolving story to tell—are
all analytic choices. Data condensation is a form of analysis that sharpens, sorts, focuses,
discards, and organizes data in such a way that “fial” conclusions can be drawn and
verifid.
By data condensation, we do not necessarily mean quantifiation. Qualitative data
can be transformed in many ways: through selection, through summary or paraphrase,
through being subsumed in a larger pattern, and so on. Occasionally, it may be helpful
to convert the data into magnitudes (e.g., the analyst decides that the program being
looked at has a “high” or “low” degree of effectiveness), but this is not always necessary.
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
Data Kondensasi
data kondensasi mengacu pada proses pemilihan, fokus, menyederhanakan,
abstrak, dan / atau mengubah data yang muncul dalam korpus penuh (body) dari
written up catatan fild, transkrip wawancara, dokumen, dan bahan-bahan empiris lainnya.
Dengan kondensasi, kita membuat data yang lebih kuat. (Kami tinggal jauh dari reduksi data sebagai istilah
karena itu berarti kita melemah atau kehilangan sesuatu dalam proses.)
Seperti yang kita lihat, data kondensasi terjadi terus menerus sepanjang hidup setiap
proyek yang berorientasi kualitatif. Bahkan sebelum data tersebut diterima, antisipatif
Data kondensasi terjadi sebagai peneliti memutuskan (sering tanpa kesadaran penuh)
yang kerangka konseptual, yang kasus, yang pertanyaan penelitian, dan yang
pengumpulan data pendekatan untuk memilih. Pengumpulan data hasil, episode lebih lanjut dari
data yang kondensasi terjadi: menulis ringkasan, coding, tema berkembang, menghasilkan
kategori, dan memo menulis analitik. Data kondensasi / proses transformasi
berlanjut setelah fildwork berakhir, sampai laporan Fial selesai.
data kondensasi bukanlah sesuatu yang terpisah dari analisis. Ini adalah bagian dari analisis.
Keputusan-mana The peneliti potongan data untuk kode dan untuk menarik keluar, yang
label kategori terbaik meringkas sejumlah potongan yang berkembang cerita sendiri-adalah
semua pilihan analitik. Data kondensasi adalah bentuk analisis yang mempertajam, macam, fokus,
membuang, dan mengatur data sedemikian rupa bahwa "Fial" kesimpulan yang bisa ditarik dan
verifid.
Dengan data yang kondensasi, kita tidak selalu berarti quantifiation. Data kualitatif
dapat diubah dengan berbagai cara: melalui seleksi, melalui ringkasan atau parafrase,
melalui yang dimasukkan dalam pola yang lebih besar, dan sebagainya. Kadang-kadang, mungkin akan membantu
untuk mengkonversi data ke dalam besaran (misalnya, analis memutuskan bahwa program yang sedang
melihat memiliki "tinggi" atau "rendah" tingkat efektivitas), tetapi hal ini tidak selalu diperlukan.
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2024 I Love Translation. All reserved.

E-mail: