Researchers often encounter the problem of evaluating variables that h terjemahan - Researchers often encounter the problem of evaluating variables that h Bahasa Indonesia Bagaimana mengatakan

Researchers often encounter the pro

Researchers often encounter the problem of evaluating variables that have been measured on different scales. For example, the choice to purchase a product by a consumer is a nominal variable, and cost is a ratio variable. Certain statistical techniques require that the measurement levels be the same.
Since the nominal variable does not have the characteristics of order, distance, or point of origin, we cannot create them artificially after the fact. The ratio-based salary variable, on the other hand, can be reduced. Rescaling product cost into categories (e.g., high, medium, low) simplifies the comparison.
This example may be extended to other measurement situations—that is, converting or rescaling a variable involves reducing the measure from the more powerful and robust level to a lesser one. 10 The loss of measurement power with this decision means that lesser-powered statistics are then used in data analysis, but fewer assumptions for their proper use are required.
In summary, higher levels of measurement generally yield more information. Because of the measurement precision at higher levels, more powerful and sensitive statistical procedures can be used. As we saw with the candy bar example, when one moves from a higher measurement level to a lower one, there is always a loss of information. Finally, when we collect information at higher levels, we can always convert, rescale, or reduce the data to arrive at a lower level.
> Sources of Measurement Differences
The ideal study should be designed and controlled for precise and unambiguous measurement of the variables. Since complete control is unattainable, error does occur. Much error is systematic (results from a bias), while the remainder is random (occurs erratically). One authority has pointed out several sources from which measured differences can come. 11
1852/5000
Dari: Inggris
Ke: Bahasa Indonesia
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
Researchers often encounter the problem of evaluating variables that have been measured on different scales. For example, the choice to purchase a product by a consumer is a nominal variable, and cost is a ratio variable. Certain statistical techniques require that the measurement levels be the same.Since the nominal variable does not have the characteristics of order, distance, or point of origin, we cannot create them artificially after the fact. The ratio-based salary variable, on the other hand, can be reduced. Rescaling product cost into categories (e.g., high, medium, low) simplifies the comparison.This example may be extended to other measurement situations—that is, converting or rescaling a variable involves reducing the measure from the more powerful and robust level to a lesser one. 10 The loss of measurement power with this decision means that lesser-powered statistics are then used in data analysis, but fewer assumptions for their proper use are required.In summary, higher levels of measurement generally yield more information. Because of the measurement precision at higher levels, more powerful and sensitive statistical procedures can be used. As we saw with the candy bar example, when one moves from a higher measurement level to a lower one, there is always a loss of information. Finally, when we collect information at higher levels, we can always convert, rescale, or reduce the data to arrive at a lower level.> Sources of Measurement DifferencesThe ideal study should be designed and controlled for precise and unambiguous measurement of the variables. Since complete control is unattainable, error does occur. Much error is systematic (results from a bias), while the remainder is random (occurs erratically). One authority has pointed out several sources from which measured differences can come. 11
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
Para peneliti sering menghadapi masalah mengevaluasi variabel yang telah diukur pada skala yang berbeda. Misalnya, pilihan untuk membeli produk oleh konsumen adalah variabel nominal, dan biaya adalah variabel rasio. Teknik statistik tertentu mengharuskan bahwa tingkat pengukuran sama.
Karena variabel nominal tidak memiliki karakteristik urutan, jarak, atau tempat asal, kita tidak dapat membuat mereka artifisial setelah fakta. Variabel gaji berdasarkan rasio-, di sisi lain, dapat dikurangi. Rescaling biaya produk dalam kategori (misalnya, tinggi, sedang, rendah) menyederhanakan perbandingan.
Contoh ini dapat diperpanjang untuk situasi-bahwa pengukuran lain, mengubah atau rescaling variabel melibatkan mengurangi ukuran dari tingkat yang lebih kuat dan kuat ke yang lebih rendah satu. 10 Hilangnya daya pengukuran dengan keputusan ini berarti bahwa statistik yang kurang bertenaga kemudian digunakan dalam analisis data, tapi asumsi yang lebih sedikit untuk penggunaan yang tepat mereka diperlukan.
Singkatnya, tingkat yang lebih tinggi dari pengukuran umumnya menghasilkan informasi lebih lanjut. Karena ketepatan pengukuran pada tingkat yang lebih tinggi, prosedur statistik yang lebih kuat dan sensitif dapat digunakan. Seperti yang kita lihat dengan candy bar contoh, ketika seseorang bergerak dari tingkat pengukuran yang lebih tinggi ke yang lebih rendah, selalu ada kehilangan informasi. Akhirnya, ketika kami mengumpulkan informasi pada tingkat yang lebih tinggi, kita selalu dapat mengkonversi, rescale, atau mengurangi data untuk sampai pada tingkat yang lebih rendah.
> Sumber Perbedaan Pengukuran
Studi yang ideal harus dirancang dan dikendalikan untuk pengukuran yang tepat dan jelas dari variabel. Sejak kontrol penuh tidak mungkin tercapai, kesalahan tidak terjadi. Banyak kesalahan sistematis (hasil dari bias), sementara sisanya adalah acak (terjadi tak menentu). Satu otoritas telah menunjukkan beberapa sumber dari mana perbedaan diukur bisa datang. 11
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2025 I Love Translation. All reserved.

E-mail: ilovetranslation@live.com