REPORTS 15 SEPTEMBER 2000 VOL 289 SCIENCE www.sciencemag.org 1922erali terjemahan - REPORTS 15 SEPTEMBER 2000 VOL 289 SCIENCE www.sciencemag.org 1922erali Bahasa Indonesia Bagaimana mengatakan

REPORTS 15 SEPTEMBER 2000 VOL 289 S

REPORTS
15 SEPTEMBER 2000 VOL 289 SCIENCE www.sciencemag.org
1922
eralizable N were 3 to 10 times lower in the
poplar sites than in any of the high-N
2
O
sites ( Table 1).
The difference in N
2
O production be-
tween cropped and successional systems pro-
vides an estimate of background fluxes in
agriculture now missing from current glob-
al flux estimates. The current Intergovern-
mental Panel on Climate Change (IPCC)
methodology for assessing direct N
2
O
emissions from agricultural fields (
17
)
multiplies total N inputs (from synthetic
fertilizer, manure, legumes, and crop resi-
due) by an N
2
O emission factor calculated
as the difference between N
2
O flux from
fertilized versus unfertilized experimental
plots plus a background flux equivalent to
that of the unfertilized plot. The difference
between the estimated background flux and
the actual preagricultural flux is missing
(
18
). In our site, the N
2
O flux difference
between the unfertilized early successional
site and the late successional forest (
15
)
would add 40% to estimates of background
N
2
O emissions, or about 20% to estimates
of annual crop emissions based on IPCC
emission factors alone (
19
). The magnitude
of this increase further underscores the im-
portance of contemporary agriculture, as
suggested in recent revisions of the global
N
2
O budget (
18
)
.
A 20% increase in the
total flux attributed to cultivated soils in the
most recent IPCC assessment (
1
) adds 0.7
Tg N year
2
1
to the global N
2
O flux.
We used current IPCC factors (
20
)to
estimate the GWP for each of these systems
based on contributions of individual gases.
GWP provides a measure of the cumulative
radiative forcing of various greenhouse gases
relative to some reference gas, usually CO
2
,
over a specific time horizon, here 20 years
(
21
). We calculated net CO
2
flux on the basis
of changes in soil organic matter and the CO
2
cost of agronomic inputs—N fertilizer, lime,
and fuel. Changes in soil organic matter re-
flect the difference between net C uptake by
plants and losses of carbon from crop harvest
and from the microbial oxidation of crop
residues and soil organic matter (
22
)
.
The conventional tillage system exhibited
a net GWP of 114 g CO
2
equivalents m
2
1
year
2
1
( Table 2). About half of this potential
was contributed by N
2
O production (52 g
CO
2
equivalents m
2
2
year
2
1
), with an equiv-
alent amount (50 g CO
2
equivalents m
2
2
year
2
1
) contributed by the combined effects
of fertilizer and lime. The CO
2
cost of fuel
use was also significant but less than that of
either lime or fertilizer. No soil C accumulat-
ed in this system, nor did CH
4
oxidation
significantly offset any GWP sources.
The net GWP of the no-till system (14 g
CO
2
equivalents m
2
2
year
2
1
) was substan-
tially lower than that of the conventional
tillage system, mostly because of increased
C storage in no-till soils. Slightly lower
fuel costs were offset by somewhat higher
lime inputs and N
2
O fluxes. Intermediate to
Fig. 1.
CH
4
oxidation
(
top
) and N
2
O pro-
duction (
bottom
)in
annual and perennial
cropping systems and
unmanaged systems.
Annual crops were
managed as conven-
tional cropping sys-
tems, as no-till sys-
tems, as low–chemical
input systems, or as
organic systems (no
fertilizer or manure).
Midsuccessional sys-
tems were either nev-
er tilled (NT ) or his-
torically tilled (HT )
before establishment.
All systems were rep-
licated three to four
times on the same or
similar soil series; flux-
es were measured
over the 1991–99 pe-
riod. There are no sig-
nificant differences
(
P
.
0.05) among bars
that share the same
letter on the basis of
analysis of variance.
Triangles indicate av-
erage fluxes when in-
cluding the single day of anomalously high fluxes in the no-till and low-input systems in 1999 and
1991, respectively (
15
).
Table 1.
Patterns of aboveground net primary production (ANPP), soil nitrogen availability, and soil organic carbon (
30
) among study sites (
10
). Values are
means (
6
SE) of annual ecosystem averages (
n
5
8 years), except that organic C values are 1999 means.
Ecosystem management
ANPP
(MT ha
2
1
year
2
1
)
NO
3
-N

(
m
gg
2
1
)
N mineralization
potential

(
m
gg
2
1
day
2
1
)
Organic C

(%)
Organic C

(kg m
2
2
)
D
C
(g m
2
2
year
2
1
)
Annual crops (Corn-soybean-
wheat rotation)
Conventional tillage 9.24 (1.41) 6.54 (0.53) 0.13 (0.05) 1.00 (0.07) 0.94 (0.05) 0.0
No till 9.19 (1.48) 4.74 (0.32) 0.17 (0.03) 1.24 (0.05) 1.24 (0.06) 30.0
Low input with legume cover 8.84 (1.39) 4.34 (0.21) 0.23 (0.02) 1.08 (0.03) 1.05 (0.01) 11.0
Organic with legume cover 7.79 (1.11) 3.83 (0.20) 0.21 (0.02) 1.09 (0.05) 1.02 (0.04) 8.0
Perennial crops
Alfalfa 8.18 (1.67) 2.53 (0.17) 0.26 (0.02) 1.30 (0.05) 1.38 (0.08) 44.0
Poplar 10.17 (4.00) 0.30 (0.02) 0.04 (0.01) 1.40 (0.14) 1.26 (0.11) 32.0
Successional communities
Early successional 4.24 (0.37) 0.63 (0.04) 0.08 (0.01) 1.63 (0.06) 1.54 (0.05) 60.0
Midsuccessional (HT )* 2.60 (0.27) 0.37 (0.05) 0.16 (0.04) 1.61 (0.19) 1.37 (0.14) 0.9
Midsuccessional (NT )* 4.93 (0.22) 0.47 (0.03) 0.03 (0.02) 3.63 (0.28) 2.84 (0.22) 0.0
Late successional forest 5.26 (0.11) 1.84 (0.11) 0.28 (0.03) 2.93 (0.47) 2.29 (0.21) 0.0
*HT, historically tilled; NT, never tilled.

0- to 25-cm depth.

0- to 7.5-cm depth.
R
EPORTS
www.sciencemag.org SCIENCE VOL 289 15 SEPTEMBER 2000
1923
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
REPORTS 15 SEPTEMBER 2000 VOL 289 SCIENCE www.sciencemag.org 1922eralizable N were 3 to 10 times lower in the poplar sites than in any of the high-N2O sites ( Table 1). The difference in N2O production be-tween cropped and successional systems pro-vides an estimate of background fluxes in agriculture now missing from current glob-al flux estimates. The current Intergovern-mental Panel on Climate Change (IPCC) methodology for assessing direct N2O emissions from agricultural fields (17) multiplies total N inputs (from synthetic fertilizer, manure, legumes, and crop resi-due) by an N2O emission factor calculated as the difference between N2O flux from fertilized versus unfertilized experimental plots plus a background flux equivalent to that of the unfertilized plot. The difference between the estimated background flux and the actual preagricultural flux is missing (18). In our site, the N2O flux difference between the unfertilized early successional site and the late successional forest (15) would add 40% to estimates of background N2O emissions, or about 20% to estimates of annual crop emissions based on IPCC emission factors alone (19). The magnitude of this increase further underscores the im-portance of contemporary agriculture, as suggested in recent revisions of the global N2O budget (18). A 20% increase in the total flux attributed to cultivated soils in the most recent IPCC assessment (1) adds 0.7 Tg N year21 to the global N2O flux. We used current IPCC factors (20)to estimate the GWP for each of these systems based on contributions of individual gases. GWP provides a measure of the cumulative radiative forcing of various greenhouse gases relative to some reference gas, usually CO2, over a specific time horizon, here 20 years (21). We calculated net CO2 flux on the basis of changes in soil organic matter and the CO2 cost of agronomic inputs—N fertilizer, lime, and fuel. Changes in soil organic matter re-flect the difference between net C uptake by plants and losses of carbon from crop harvest and from the microbial oxidation of crop residues and soil organic matter (22). The conventional tillage system exhibited a net GWP of 114 g CO2 equivalents m21 year21 ( Table 2). About half of this potential was contributed by N2O production (52 g CO2equivalents m22year21), with an equiv-alent amount (50 g CO2 equivalents m22 year21) contributed by the combined effects of fertilizer and lime. The CO2 cost of fuel use was also significant but less than that of either lime or fertilizer. No soil C accumulat-ed in this system, nor did CH4 oxidation significantly offset any GWP sources. The net GWP of the no-till system (14 g CO2 equivalents m22 year21) was substan-tially lower than that of the conventional tillage system, mostly because of increased C storage in no-till soils. Slightly lower fuel costs were offset by somewhat higher lime inputs and N2O fluxes. Intermediate to Fig. 1. CH4 oxidation (top) and N2O pro-duction (bottom)in annual and perennial cropping systems and unmanaged systems. Annual crops were managed as conven-tional cropping sys-tems, as no-till sys-tems, as low–chemical input systems, or as organic systems (no fertilizer or manure). Midsuccessional sys-tems were either nev-er tilled (NT ) or his-torically tilled (HT ) before establishment. All systems were rep-licated three to four times on the same or similar soil series; flux-es were measured over the 1991–99 pe-riod. There are no sig-nificant differences (P.0.05) among bars that share the same letter on the basis of analysis of variance. Triangles indicate av-erage fluxes when in-cluding the single day of anomalously high fluxes in the no-till and low-input systems in 1999 and 1991, respectively (15). Table 1. Patterns of aboveground net primary production (ANPP), soil nitrogen availability, and soil organic carbon (30) among study sites (10). Values are means (6SE) of annual ecosystem averages (n5 8 years), except that organic C values are 1999 means. Ecosystem management ANPP (MT ha21 year21) NO3-N† (mgg21) N mineralization potential† (mgg21 day21) Organic C‡ (%) Organic C‡ (kg m22) DC (g m22 year21) Annual crops (Corn-soybean-wheat rotation) Conventional tillage 9.24 (1.41) 6.54 (0.53) 0.13 (0.05) 1.00 (0.07) 0.94 (0.05) 0.0 No till 9.19 (1.48) 4.74 (0.32) 0.17 (0.03) 1.24 (0.05) 1.24 (0.06) 30.0 Low input with legume cover 8.84 (1.39) 4.34 (0.21) 0.23 (0.02) 1.08 (0.03) 1.05 (0.01) 11.0 Organic with legume cover 7.79 (1.11) 3.83 (0.20) 0.21 (0.02) 1.09 (0.05) 1.02 (0.04) 8.0 Perennial crops Alfalfa 8.18 (1.67) 2.53 (0.17) 0.26 (0.02) 1.30 (0.05) 1.38 (0.08) 44.0 Poplar 10.17 (4.00) 0.30 (0.02) 0.04 (0.01) 1.40 (0.14) 1.26 (0.11) 32.0 Successional communities Early successional 4.24 (0.37) 0.63 (0.04) 0.08 (0.01) 1.63 (0.06) 1.54 (0.05) 60.0 Midsuccessional (HT )* 2.60 (0.27) 0.37 (0.05) 0.16 (0.04) 1.61 (0.19) 1.37 (0.14) 0.9 Midsuccessional (NT )* 4.93 (0.22) 0.47 (0.03) 0.03 (0.02) 3.63 (0.28) 2.84 (0.22) 0.0 Late successional forest 5.26 (0.11) 1.84 (0.11) 0.28 (0.03) 2.93 (0.47) 2.29 (0.21) 0.0 *HT, historically tilled; NT, never tilled. †0- to 25-cm depth. ‡0- to 7.5-cm depth. REPORTS www.sciencemag.org SCIENCE VOL 289 15 SEPTEMBER 2000 1923
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
LAPORAN
15 September 2000 VOL 289 ILMU www.sciencemag.org
1922
eralizable N adalah 3 sampai 10 kali lebih rendah di
situs poplar daripada di salah satu high-N
2
O
situs (Tabel 1).
Perbedaannya di N
2
O produksi menjadi-
tween dipotong dan sistem suksesi pro-
Vides perkiraan latar belakang fluks di
bidang pertanian sekarang hilang dari glob- saat
al fluks perkiraan. The Intergovern- saat
Panel jiwa tentang Perubahan Iklim (IPCC)
metodologi untuk menilai N langsung
2
O
emisi dari lahan pertanian (17) mengalikan jumlah input N (dari sintetis pupuk, pupuk kandang, kacang-kacangan, dan residen tanaman karena) oleh N 2 O faktor emisi dihitung sebagai selisih antara N 2 O fluks dari dibuahi dibandingkan eksperimental yang tidak dibuahi plot ditambah latar belakang fluks setara dengan yang dari plot yang tidak dibuahi. Perbedaan antara estimasi fluks latar belakang dan fluks preagricultural sebenarnya hilang (18). Di situs kami, N 2 O fluks perbedaan antara dibuahi awal suksesi situs dan almarhum hutan suksesi (15) akan menambah 40% perkiraan dari latar belakang N 2 O emisi, atau sekitar 20% perkiraan emisi tanaman tahunan berdasarkan IPCC faktor emisi sendiri (19). Besarnya kenaikan ini lebih lanjut menggarisbawahi im- portance pertanian kontemporer, seperti yang disarankan dalam revisi terbaru dari global N 2 O anggaran (18). Kenaikan 20% di fluks total dikaitkan dengan tanah dibudidayakan di penilaian IPCC terbaru ( 1) menambahkan 0,7 Tg N tahun 2 1 ke N global yang 2 O fluks. Kami menggunakan faktor IPCC saat ini (20) untuk memperkirakan GWP untuk masing-masing sistem ini berdasarkan kontribusi dari gas individu. GWP memberikan ukuran kumulatif radiasi memaksa berbagai gas rumah kaca relatif terhadap beberapa gas referensi, biasanya CO 2, selama horizon waktu tertentu, di sini 20 tahun (21). Kami menghitung CO bersih 2 fluks atas dasar perubahan bahan organik tanah dan CO 2 biaya agronomi pupuk input-N, kapur, dan bahan bakar. Perubahan bahan organik tanah kembali memantulkan perbedaan antara serapan C bersih dengan tanaman dan kerugian dari karbon dari panen tanaman dan dari oksidasi mikroba tanaman residu dan bahan organik tanah (22). Sistem pengolahan tanah konvensional dipamerkan GWP bersih 114 g CO 2 setara m 2 1 tahun 2 1 (Tabel 2). Sekitar setengah dari potensi ini disumbangkan oleh N 2 O produksi (52 g CO 2 setara m 2 2 tahun 2 1), dengan equiv- jumlah alent (50 g CO 2 setara m 2 2 tahun 2 1) disumbangkan oleh efek gabungan pupuk dan kapur. CO 2 biaya bahan bakar penggunaan juga signifikan, namun kurang dari baik kapur atau pupuk. Tidak ada tanah C terakumulasi ed dalam sistem ini, juga tidak CH 4 oksidasi secara signifikan mengimbangi sumber GWP. GWP bersih tidak-sampai sistem (14 g CO 2 setara m 2 2 tahun 2 1) telah substansial tially lebih rendah dari itu dari konvensional sistem pengolahan tanah, karena sebagian besar dari peningkatan penyimpanan C tidak-sampai tanah. Sedikit lebih rendah biaya bahan bakar diimbangi oleh agak lebih tinggi masukan kapur dan N 2 O fluks. Menengah untuk Gambar. 1. CH 4 oksidasi (atas) dan N 2 O pro duksi (bawah) dalam tahunan dan abadi sistem tanam dan sistem unmanaged. Tanaman tahunan yang dikelola sebagai konvensi nasional tanam sistemik tems, karena tidak ada-sampai sistemik tems, sebagai rendah-kimia sistem masukan, atau sebagai sistem organik (tanpa pupuk atau pupuk). Midsuccessional sistemik tems entah nev- er digarap (NT) atau his torically digarap (HT) sebelum pembentukan. Semua sistem yang-wakil licated 03:57 kali pada yang sama atau seri tanah yang sama; flux- es diukur selama 1991-1999 Oto- riod. Tidak ada sig- perbedaan nifikan (P. 0,05) antara bar yang berbagi sama surat atas dasar analisis varians. Segitiga menunjukkan av- fluks erage ketika di- daerah, termasuk hari fluks anomali tinggi di no-sampai dan sistem rendah-masukan pada tahun 1999 dan 1991, masing-masing (15). Tabel 1. Pola atas tanah bersih produksi primer (ANPP), ketersediaan nitrogen tanah, dan karbon organik tanah (30) di antara lokasi penelitian (10). Nilai adalah sarana (6 SE) dari rata-rata ekosistem tahunan (n 5 8 tahun), kecuali bahwa nilai C organik 1.999 berarti. Manajemen Ekosistem ANPP (MT ha 2 1 tahun 2 1) NO 3 -N † (m gg 2 1) N mineralisasi potensial † (m gg 2 1 hari 2 1) Organik C ‡ (%) Organik C ‡ (kg m 2 2) D C (gm 2 2 tahun 2 1) tanaman tahunan (Jagung-soybean- rotasi gandum) pengolahan tanah konvensional 9.24 (1.41) 6.54 (0.53) 0.13 (0.05) 1.00 (0.07) 0.94 (0.05) 0.0 Tidak sampai 9,19 (1,48) 4,74 (0,32) 0,17 (0,03) 1,24 (0,05) 1,24 (0,06) 30,0 masukan rendah dengan kacang-kacangan penutup 8.84 (1.39) 4,34 (0,21) 0,23 (0,02) 1,08 (0,03) 1,05 (0,01) 11,0 Organik dengan penutup kacangan 7,79 (1,11) 3,83 (0,20) 0,21 (0,02) 1,09 (0,05) 1,02 (0,04) 8,0 tanaman Perennial Alfalfa 8.18 ( 1,67) 2,53 (0,17) 0,26 (0,02) 1,30 (0,05) 1,38 (0,08) 44,0 Poplar 10,17 (4,00) 0,30 (0,02) 0,04 (0,01) 1,40 (0,14) 1,26 (0,11) 32,0 masyarakat suksesi awal suksesi 4,24 (0,37) 0,63 (0,04) 0,08 (0,01) 1,63 (0,06) 1,54 (0,05) 60,0 Midsuccessional (HT) * 2,60 (0,27) 0,37 (0,05) 0,16 (0,04) 1,61 (0,19) 1,37 (0,14) 0,9 Midsuccessional (NT) * 4.93 (0.22 ) 0,47 (0,03) 0,03 (0,02) 3,63 (0,28) 2,84 (0,22) 0.0 Akhir suksesi hutan 5.26 (0.11) 1,84 (0,11) 0,28 (0,03) 2,93 (0,47) 2,29 (0,21) 0,0 * HT, historis digarap; NT, tidak pernah digarap. † 0- 25-cm mendalam. ‡ 0- 7,5 cm mendalam. R EPORTS www.sciencemag.org ILMU VOL 289 15 September 2000 1923













































































































































































































































































Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2025 I Love Translation. All reserved.

E-mail: