During the initial development of the IEEE 802.11n (11n)amendment for  terjemahan - During the initial development of the IEEE 802.11n (11n)amendment for  Bahasa Indonesia Bagaimana mengatakan

During the initial development of t

During the initial development of the IEEE 802.11n (11n)
amendment for improving the throughput of wireless LANs, a
lot of excitement existed surrounding the potential higher
throughput (i.e., faster downloads), and increased range (distance)
achievable. However, delays in the development of this
standard (which began in 2003, and is still in the final draft
stages) as well as vendor, customer reluctance to adopt the
pre-11n offerings in the marketplace, have generally slowed
interest in this next-generation technology.
However, there is still much to be excited about. The latest
draft of IEEE 802.11n (Draft 3.0) offers the potential of
throughputs beyond 200 Mbps, based on physical layer
(PHY) data rates up to 600 Mbps. This is achieved through
the use of multiple transmit and receive antennas, referred
to as MIMO (multiple input, multiple output). Using techniques
such as spatial division multiplexing (SDM), transmitter
beamforming, and space-time block coding (STBC), MIMO
is used to increase dramatically throughput over single
antenna systems (by two to four times) or to improve range
of reception, depending on the environment.
This article offers an exposition on the techniques used in
IEEE 802.11n to achieve the above improvements to throughput
and range. First, the current generation WLAN devices
(11a/b/g) are described in terms of the benefits offered to end
users. Next, the evolution of the 11n amendment is discussed,
describing the main proposals given, and illustrating reasons
for the delay in standardization. Then, the changes to the PHY
for 11n are presented. A description of channel modeling with
MIMO is shown, followed by the signal processing techniques
employed, including MIMO channel estimation and detection,
space-time block coding (STBC), and transmitter beamforming.
Simulation results are presented which illustrate the benefits
of these techniques, versus the existing 11a/g structures,
for both throughput and range. Finally, a brief section outlining
considerations for the rapid prototyping of a baseband
design based on the 802.11n PHY is presented. We conclude
with a discussion of the future for 11n, describing the issues
addressed with Drafts 2.0 and 3.0, as well as its place in a
wireless market with WiMAX and Bluetooth.
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
Selama pengembangan awal IEEE 802.11n (11n)
amandemen untuk meningkatkan throughput LAN nirkabel,
banyak kegembiraan ada sekitar potensi tinggi
throughput (yaitu, lebih cepat download), dan peningkatan berbagai (jarak)
dapat dicapai. Namun, penundaan dalam pengembangan ini
standar (yang dimulai pada tahun 2003, dan masih dalam rancangan akhir
tahap) juga penjual, Pelanggan enggan untuk mengadopsi
pra-11n persembahan di pasar, umumnya telah melambat
minat dalam teknologi generasi ini.
Namun, ada masih banyak yang akan bersemangat. Terbaru
draft standar IEEE 802.11n (Draft 3.0) menawarkan potensi
throughputs melebihi 200 Mbps, berdasarkan data fisik layer
(PHY) harga hingga 600 Mbps. Hal ini dicapai melalui
penggunaan beberapa transmit dan receive antena, disebut
untuk sebagai MIMO (multiple input, multiple output). Menggunakan teknik
seperti spasial division multiplexing (SDM), pemancar
beamforming, dan ruang blok coding (STBC), MIMO
digunakan untuk secara dramatis meningkatkan throughput selama satu
sistem antena (oleh dua sampai empat kali) atau untuk meningkatkan jangkauan
penerimaan, tergantung pada lingkungan.
Artikel ini menawarkan eksposisi pada teknik-teknik yang digunakan dalam
IEEE 802.11n untuk mencapai perbaikan atas throughput
dan jangkauan. Pertama, generasi sekarang WLAN devices
(11a/b/g) dijelaskan dalam hal keuntungan yang ditawarkan untuk mengakhiri
pengguna. Selanjutnya, evolusi amandemen 11n dibahas,
menggambarkan proposal utama yang diberikan, dan menggambarkan alasan
atas keterlambatan dalam Standardisasi. Kemudian, perubahan ke PHY
untuk 11n disajikan. Deskripsi Channel pemodelan dengan
MIMO ditampilkan, diikuti dengan teknik pemrosesan sinyal
digunakan, termasuk MIMO saluran estimasi dan deteksi,
blok ruang-waktu coding (STBC), dan pemancar beamforming.
hasil simulasi disajikan yang menggambarkan manfaat
teknik ini, versus 11a g struktur yang ada,
throughput dan jangkauan. Akhirnya, Bagian singkat menguraikan
pertimbangan untuk cepat prototyping baseband
desain berdasarkan 802.11n PHY disajikan. Kami menyimpulkan
dengan diskusi masa depan untuk 11n, menggambarkan isu-isu
ditangani dengan konsep 2.0 dan 3.0, serta tempatnya di
nirkabel pasar dengan WiMAX dan Bluetooth.
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
During the initial development of the IEEE 802.11n (11n)
amendment for improving the throughput of wireless LANs, a
lot of excitement existed surrounding the potential higher
throughput (i.e., faster downloads), and increased range (distance)
achievable. However, delays in the development of this
standard (which began in 2003, and is still in the final draft
stages) as well as vendor, customer reluctance to adopt the
pre-11n offerings in the marketplace, have generally slowed
interest in this next-generation technology.
However, there is still much to be excited about. The latest
draft of IEEE 802.11n (Draft 3.0) offers the potential of
throughputs beyond 200 Mbps, based on physical layer
(PHY) data rates up to 600 Mbps. This is achieved through
the use of multiple transmit and receive antennas, referred
to as MIMO (multiple input, multiple output). Using techniques
such as spatial division multiplexing (SDM), transmitter
beamforming, and space-time block coding (STBC), MIMO
is used to increase dramatically throughput over single
antenna systems (by two to four times) or to improve range
of reception, depending on the environment.
This article offers an exposition on the techniques used in
IEEE 802.11n to achieve the above improvements to throughput
and range. First, the current generation WLAN devices
(11a/b/g) are described in terms of the benefits offered to end
users. Next, the evolution of the 11n amendment is discussed,
describing the main proposals given, and illustrating reasons
for the delay in standardization. Then, the changes to the PHY
for 11n are presented. A description of channel modeling with
MIMO is shown, followed by the signal processing techniques
employed, including MIMO channel estimation and detection,
space-time block coding (STBC), and transmitter beamforming.
Simulation results are presented which illustrate the benefits
of these techniques, versus the existing 11a/g structures,
for both throughput and range. Finally, a brief section outlining
considerations for the rapid prototyping of a baseband
design based on the 802.11n PHY is presented. We conclude
with a discussion of the future for 11n, describing the issues
addressed with Drafts 2.0 and 3.0, as well as its place in a
wireless market with WiMAX and Bluetooth.
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2024 I Love Translation. All reserved.

E-mail: