Real image defects in concave mirrors In tracing rays, you havereflect terjemahan - Real image defects in concave mirrors In tracing rays, you havereflect Bahasa Indonesia Bagaimana mengatakan

Real image defects in concave mirro

Real image defects in concave mirrors In tracing rays, you have
reflected the rays from the principal plane, which is a vertical line
representing the mirror. In reality, rays are reflected off the mirror itself, as
shown in Figure 17-12a. Notice that only parallel rays that are close to the
principal axis, or paraxial rays, are reflected through the focal point. Other
rays converge at points closer to the mirror. The image formed by parallel
rays reflecting off a spherical mirror with a large mirror diameter and a
small radius of curvature is a disk, not a point. This effect, called spherical
aberration, makes an image look fuzzy, not sharp.
A mirror ground to the shape of a parabola, as in Figure 17-12b, suffers
no spherical aberration. Because of the cost of manufacturing large,
perfectly parabolic mirrors, many of the newest telescopes use spherical
mirrors and smaller, specially-designed secondary mirrors or lenses to
correct for spherical aberration. Also, spherical aberration is reduced as
the ratio of the mirror’s diameter, shown in Figure 17-12a, to its radius of
curvature is reduced. Thus, lower-cost spherical mirrors can be used in
lower-precision applications.
Mathematical Method of Locating the Image
The spherical mirror model can be used to develop a simple equation
for spherical mirrors. You must use the paraxial ray approximation, which
states that only rays that are close to and almost parallel with the principal
axis are used to form an image. Using this, in combination with the law of
reflection, leads to the mirror equation, relating the focal length, f, object
position, do, and image position, di, of a spherical mirror.
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
Real image defects in concave mirrors In tracing rays, you havereflected the rays from the principal plane, which is a vertical linerepresenting the mirror. In reality, rays are reflected off the mirror itself, asshown in Figure 17-12a. Notice that only parallel rays that are close to theprincipal axis, or paraxial rays, are reflected through the focal point. Otherrays converge at points closer to the mirror. The image formed by parallelrays reflecting off a spherical mirror with a large mirror diameter and asmall radius of curvature is a disk, not a point. This effect, called sphericalaberration, makes an image look fuzzy, not sharp.A mirror ground to the shape of a parabola, as in Figure 17-12b, suffersno spherical aberration. Because of the cost of manufacturing large,perfectly parabolic mirrors, many of the newest telescopes use sphericalmirrors and smaller, specially-designed secondary mirrors or lenses tocorrect for spherical aberration. Also, spherical aberration is reduced asthe ratio of the mirror’s diameter, shown in Figure 17-12a, to its radius ofcurvature is reduced. Thus, lower-cost spherical mirrors can be used inlower-precision applications.Mathematical Method of Locating the ImageThe spherical mirror model can be used to develop a simple equationfor spherical mirrors. You must use the paraxial ray approximation, whichstates that only rays that are close to and almost parallel with the principalaxis are used to form an image. Using this, in combination with the law ofreflection, leads to the mirror equation, relating the focal length, f, objectposition, do, and image position, di, of a spherical mirror.
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
Cacat bayangan nyata di cermin cekung Dalam sinar tracing, Anda telah
mencerminkan sinar dari pesawat utama, yang merupakan garis vertikal
mewakili cermin. Pada kenyataannya, sinar tercermin dari cermin itu sendiri, seperti yang
ditunjukkan pada Gambar 17-12a. Perhatikan bahwa hanya paralel sinar yang dekat dengan
sumbu utama, atau sinar paraksial, tercermin melalui titik fokus. Lain
sinar konvergen pada titik-titik lebih dekat ke cermin. Bayangan yang dibentuk oleh paralel
sinar terpantul cermin bulat dengan diameter cermin besar dan
radius kecil kelengkungan adalah disk, bukan titik. Efek ini, disebut bola
penyimpangan, membuat gambar terlihat kabur, tidak tajam.
Sebuah cermin tanah dengan bentuk parabola, seperti pada Gambar 17-12b, menderita
tidak ada penyimpangan bola. Karena biaya manufaktur besar,
cermin sempurna parabola, banyak dari teleskop terbaru menggunakan bola
cermin dan lebih kecil, yang dirancang khusus cermin sekunder atau lensa untuk
mengoreksi penyimpangan bola. Juga, penyimpangan bola berkurang sebagai
rasio diameter cermin, yang ditunjukkan pada Gambar 17-12a, untuk jari-jari dari
kelengkungan berkurang. Dengan demikian, biaya lebih rendah bola cermin dapat digunakan dalam
aplikasi-presisi lebih rendah.
Metode Matematika dari Menemukan Image
Model cermin bulat dapat digunakan untuk mengembangkan persamaan sederhana
untuk cermin bulat. Anda harus menggunakan pendekatan ray paraksial, yang
menyatakan bahwa hanya sinar yang dekat dengan dan hampir sejajar dengan kepala
sumbu yang digunakan untuk membentuk sebuah gambar. Menggunakan ini, dalam kombinasi dengan hukum
refleksi, mengarah ke persamaan cermin, berkaitan panjang fokus, f, objek
posisi, lakukan, dan posisi gambar, di, dari cermin bulat.
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2025 I Love Translation. All reserved.

E-mail: