Hasil (
Bahasa Indonesia) 1:
[Salinan]Disalin!
Data CondensationData condensation refers to the process of selecting, focusing, simplifying,abstracting, and/or transforming the data that appear in the full corpus (body) ofwritten-up fild notes, interview transcripts, documents, and other empirical materials.By condensing, we’re making data stronger. (We stay away from data reduction as a termbecause that implies we’re weakening or losing something in the process.)As we see it, data condensation occurs continuously throughout the life of anyqualitatively oriented project. Even before the data are actually collected, anticipatorydata condensation is occurring as the researcher decides (often without full awareness)which conceptual framework, which cases, which research questions, and whichdata collection approaches to choose. As data collection proceeds, further episodes ofdata condensation occur: writing summaries, coding, developing themes, generatingcategories, and writing analytic memos. The data condensing/transforming processcontinues after the fildwork is over, until a fial report is completed.Data condensation is not something separate from analysis. It is a part of analysis.The researcher’s decisions—which data chunks to code and which to pull out, whichcategory labels best summarize a number of chunks, which evolving story to tell—areall analytic choices. Data condensation is a form of analysis that sharpens, sorts, focuses,discards, and organizes data in such a way that “fial” conclusions can be drawn andverifid.By data condensation, we do not necessarily mean quantifiation. Qualitative datacan be transformed in many ways: through selection, through summary or paraphrase,through being subsumed in a larger pattern, and so on. Occasionally, it may be helpfulto convert the data into magnitudes (e.g., the analyst decides that the program beinglooked at has a “high” or “low” degree of effectiveness), but this is not always necessary.
Sedang diterjemahkan, harap tunggu..
