This is just a clarification of the distinction between data accuracy  terjemahan - This is just a clarification of the distinction between data accuracy  Bahasa Indonesia Bagaimana mengatakan

This is just a clarification of the

This is just a clarification of the distinction between data accuracy and data quality. But how can you specifically define data quality? Can you know intuitively whether a data element is of high quality or not by examining it? If so, what kind of examination do you conduct, and how do you examine the data? As IT professionals, having worked with data in some capacity, we have a sense of what corrupt data is and how to tell whether a data element is of high data quality or not. But a vague concept of data quality is not ade- quate to deal with data corruption effectively. So let us get into some concrete ways of recognizing data quality in the data warehouse. The following list is a survey of the characteristics or indicators of high-quality data. We will start with data accuracy, as discussed earlier. Study each of these data quality di- mensions and use the list to recognize and measure the data quality in the systems that feed your data warehouse.
Accuracy. The value stored in the system for a data element is the right value for that occurrence of the data element. If you have a customer name and an address stored in a record, then the address is the correct address for the customer with that name. If you find the quantity ordered as 1000 units in the record for order number 12345678, then that quantity is the accurate quantity for that order. Domain Integrity. The data value of an attribute falls in the range of allowable, de- fined values. The common example is the allowable values being “male” and “fe- male” for the gender data element. Data Type.Value for a data attribute is actually stored as the data type defined for that attribute. When the data type of the store name field is defined as “text,” all in- stances of that field contain the store name shown in textual format and not numer- ic codes. Consistency. The form and content of a data field is the same across multiple source systems. If the product code for product ABC in one system is 1234, then the code for this product must be 1234 in every source system. Redundancy.The same data must not be stored in more than one place in a system. If, for reasons of efficiency, a data element is intentionally stored in more than one place in a system, then the redundancy must be clearly identified. Completeness.There are no missing values for a given attribute in the system. For ex- ample, in a customer file, there is a valid value for the “state” field. In the file for order details, every detail record for an order is completely filled. Duplication. Duplication of records in a system is completely resolved. If the product file is known to have duplicate records, then all the duplicate records for each prod- uct are identified and a cross-reference created. Conformance to Business Rules. The values of each data item adhere to prescribed business rules. In an auction system, the hammer or sale price cannot be less than the reserve price. In a bank loan system, the loan balance must always be positive or zero. Structural Definiteness. Wherever a data item can naturally be structured into indi- vidual components, the item must contain this well-defined structure. For example, an individual’s name naturally divides into first name, middle initial, and last name. Values for names of individuals must be stored as first name, middle initial, and last name. This characteristic of data quality simplifies enforcement of standards and re- duces missing values.



0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
This is just a clarification of the distinction between data accuracy and data quality. But how can you specifically define data quality? Can you know intuitively whether a data element is of high quality or not by examining it? If so, what kind of examination do you conduct, and how do you examine the data? As IT professionals, having worked with data in some capacity, we have a sense of what corrupt data is and how to tell whether a data element is of high data quality or not. But a vague concept of data quality is not ade- quate to deal with data corruption effectively. So let us get into some concrete ways of recognizing data quality in the data warehouse. The following list is a survey of the characteristics or indicators of high-quality data. We will start with data accuracy, as discussed earlier. Study each of these data quality di- mensions and use the list to recognize and measure the data quality in the systems that feed your data warehouse.Accuracy. The value stored in the system for a data element is the right value for that occurrence of the data element. If you have a customer name and an address stored in a record, then the address is the correct address for the customer with that name. If you find the quantity ordered as 1000 units in the record for order number 12345678, then that quantity is the accurate quantity for that order. Domain Integrity. The data value of an attribute falls in the range of allowable, de- fined values. The common example is the allowable values being “male” and “fe- male” for the gender data element. Data Type.Value for a data attribute is actually stored as the data type defined for that attribute. When the data type of the store name field is defined as “text,” all in- stances of that field contain the store name shown in textual format and not numer- ic codes. Consistency. The form and content of a data field is the same across multiple source systems. If the product code for product ABC in one system is 1234, then the code for this product must be 1234 in every source system. Redundancy.The same data must not be stored in more than one place in a system. If, for reasons of efficiency, a data element is intentionally stored in more than one place in a system, then the redundancy must be clearly identified. Completeness.There are no missing values for a given attribute in the system. For ex- ample, in a customer file, there is a valid value for the “state” field. In the file for order details, every detail record for an order is completely filled. Duplication. Duplication of records in a system is completely resolved. If the product file is known to have duplicate records, then all the duplicate records for each prod- uct are identified and a cross-reference created. Conformance to Business Rules. The values of each data item adhere to prescribed business rules. In an auction system, the hammer or sale price cannot be less than the reserve price. In a bank loan system, the loan balance must always be positive or zero. Structural Definiteness. Wherever a data item can naturally be structured into indi- vidual components, the item must contain this well-defined structure. For example, an individual’s name naturally divides into first name, middle initial, and last name. Values for names of individuals must be stored as first name, middle initial, and last name. This characteristic of data quality simplifies enforcement of standards and re- duces missing values.
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
Ini hanya klarifikasi perbedaan antara akurasi data dan kualitas data. Tapi bagaimana bisa Anda secara khusus menentukan kualitas data? Dapatkah Anda tahu secara intuitif apakah elemen data berkualitas tinggi atau tidak dengan memeriksa itu? Jika demikian, apa jenis pemeriksaan yang Anda melakukan, dan bagaimana Anda memeriksa data? Sebagai profesional TI, pernah bekerja dengan data dalam beberapa kapasitas, kita memiliki rasa apa data yang dan bagaimana untuk mengatakan apakah suatu elemen data adalah kualitas data yang tinggi atau tidak. Tapi konsep yang samar-samar kualitas data tidak me- madai untuk menangani data korupsi secara efektif. Jadi mari kita masuk ke beberapa cara konkret mengakui kualitas data dalam data warehouse. Daftar berikut adalah survei dari karakteristik atau indikator data berkualitas tinggi. Kami akan mulai dengan akurasi data, seperti yang dibahas sebelumnya. Mempelajari masing-masing mensions di- kualitas data dan menggunakan daftar untuk mengenali dan mengukur kualitas data dalam sistem yang memberi makan data warehouse Anda.
Akurasi. Nilai yang disimpan dalam sistem untuk elemen data adalah nilai yang tepat untuk itu terjadinya elemen data. Jika Anda memiliki nama pelanggan dan alamat disimpan dalam catatan, maka alamat adalah alamat yang benar untuk pelanggan dengan nama itu. Jika Anda menemukan jumlah memerintahkan 1000 unit dalam catatan untuk pesanan nomor 12345678, maka kuantitas yang kuantitas akurat untuk urutan itu. Domain Integritas. Nilai data atribut jatuh di kisaran yang diijinkan, de- nilai didenda. Contoh umum adalah nilai-nilai yang diijinkan menjadi "laki-laki" dan "laki-laki femali" untuk elemen data gender. Data Type.Value untuk atribut data yang sebenarnya disimpan sebagai tipe data yang ditetapkan untuk atribut itu. Ketika tipe data kolom nama toko didefinisikan sebagai "teks," semua sikap di- lapangan yang berisi nama toko ditampilkan dalam format tekstual dan tidak kode ic numer-. Konsistensi. Bentuk dan isi dari data lapangan adalah di beberapa sistem sumber yang sama. Jika kode produk untuk produk ABC dalam satu sistem adalah 1234, maka kode untuk produk ini harus 1.234 dalam setiap sistem sumber. Redundancy.The data yang sama tidak boleh disimpan di lebih dari satu tempat dalam suatu sistem. Jika, untuk alasan efisiensi, elemen data yang sengaja disimpan di lebih dari satu tempat dalam suatu sistem, maka redundansi harus diidentifikasi secara jelas. Completeness.There ada nilai-nilai yang hilang untuk atribut yang diberikan dalam sistem. Contohnya, dalam sebuah file pelanggan, ada nilai yang valid untuk "negara" lapangan. Dalam file untuk detail pesanan, setiap catatan rinci untuk pesanan terisi penuh. Duplikasi. Duplikasi catatan dalam sistem benar-benar diselesaikan. Jika file produk dikenal memiliki duplikat catatan, maka semua catatan duplikat untuk setiap komoditasnya diidentifikasi dan-referensi silang dibuat. Kesesuaian dengan Aturan Bisnis. Nilai-nilai masing-masing item data mematuhi aturan bisnis ditentukan. Dalam sistem lelang, palu atau penjualan harga tidak bisa kurang dari harga cadangan. Dalam sistem pinjaman bank, saldo pinjaman harus selalu positif atau nol. Definiteness struktural. Dimanapun item data secara alami dapat disusun menjadi komponen individual, item harus berisi struktur ini didefinisikan dengan baik. Sebagai contoh, nama individu secara alami terbagi menjadi nama pertama, awal tengah, dan nama terakhir. Nilai untuk nama individu harus disimpan sebagai nama pertama, awal tengah, dan nama terakhir. Ini karakteristik kualitas data menyederhanakan penegakan standar dan duces kembali nilai-nilai yang hilang.



Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2025 I Love Translation. All reserved.

E-mail: