When offshoring entered the popular lexicon, in the 1990s, it became shorthand for efforts to arbitrage labor costs by using lower-wage workers in developing nations. But savvy manufacturing leaders saw it as more: a decisive change in globalization, made possible by a wave of liberalization in countries such as China and India, a steady improvement in the capabilities of emerging-market suppliers and workers, a growing ability to transfer proven management processes to new locales, and increasingly favorable transportation and communications economics.
Something of equal moment is occurring today. As we settle into a “new normal” catalyzed by the global financial crisis, the ensuing recession, and an uneven global recovery, traditional arbitrage models seem increasingly outmoded.1 For some products, low labor costs still furnish a decisive competitive edge, of course. But as wages and purchasing power rise in emerging markets, their relative importance as centers of demand, not just supply, is growing.
Global energy dynamics too are evolving—not just the now-familiar shale-gas revolution in the United States, but also rising levels of innovation in areas such as battery storage and renewables—potentially reframing manufacturers’ strategic options. Simultaneously, advances stemming from the expanding Internet of Things, the next wave of robotics, and other disruptive technologies are enabling radical operational innovations while boosting the importance of new workforce skills.
Rather than focus on offshoring or even “reshoring”—a term used to describe the return of manufacturing to developed markets as wages rise in emerging ones—today’s manufacturing strategies need to concentrate on what’s coming next. A next-shoring perspective emphasizes proximity to demand and proximity to innovation. Both are crucial in a world where evolving demand from new markets places a premium on the ability to adapt products to different regions and where emerging technologies that could disrupt costs and processes are making new supply ecosystems a differentiator. Next-shoring strategies encompass elements such as a diverse and agile set of production locations, a rich network of innovation-oriented partnerships, and a strong focus on technical skills.
In this article, we’ll describe the economic forces sweeping across the manufacturing landscape and examine technologies coming to the fore. Then we’ll suggest some principles for executives operating in this new world. The picture we’re painting is of necessity impressionistic: next-shoring is still taking shape and no doubt will evolve in unexpected ways. What’s increasingly clear, though, is that the assumptions underlying its predecessor, offshoring, are giving way to something new.
Economic fundamentals
The case for next-shoring starts with the economic fundamentals of demand (since the importance of local factors is growing) and supply (as the dynamics of labor and energy costs evolve).
The importance of local demand factors
More than two-thirds of global manufacturing activity takes place in industries that tend to locate close to demand. This simple fact helps explain why manufacturing output and employment have recently risen—not only in Europe and North America, but also in emerging markets, such as China—since demand bottomed out during the recession following the financial crisis of 2008.
Regional demand looms large in sectors such as automobiles, machinery, food and beverages, and fabricated metals. In the United States, about 85 percent of the industrial rebound (half a million jobs since 2010) can be explained just by output growth in automobiles, machinery, and oil and gas—along with the linkages between these sectors and locally oriented suppliers of fabricated metals, rubber, and plastics (Exhibit 1).2 The automotive, machinery, and oil and gas industries consume nearly 80 percent of US metals output, for example.
Exhibit 1
In the recent US industrial rebound, about 85 percent of the job growth in manufacturing occurred in automobiles, machinery, and regional-supplier industries.
Enlarge
In China too, locally oriented manufacturers have contributed significantly to rising regional investment and employment. The country has, for example, emerged as the world’s largest market and producer for the automotive industry, and many rapidly growing manufacturing sectors there have deep ties to it. As automotive OEMs expand their capacity in emerging markets to serve regional demand, their suppliers have followed; the number of automotive-supplier plants in Asia has tripled in just the past decade.
The emerging markets’ share of global demand is steadily climbing, from roughly 40 percent in 2008 to an expected 66 percent by 2025 (Exhibit 2). As that share rises, it also is fragmenting into many product varieties, feature and quality levels, price points, service needs, and marketing channels. The regional, ethnic, income, and cultural diversity of markets such as Africa, Brazil, China, and India (where some local segments exceed the size of entire markets in developed nations) is raising the ante for meeting local demand. In the automobile industry, for example, fragmenting customer demand has led to a 30 to 50 percent increase in the number of models. Ninety percent of recent capital expenditures in the automotive sector have involved product derivatives worldwide and capacity expansions in new markets.
Exhibit 2
Emerging markets' share of global demand is expected to reach 66 percent by 2025.
Enlarge
The limits of labor-cost arbitrage
Surging local demand helps explain why rapid wage growth in China hasn’t choked off manufacturing expansion there. Wages have nearly doubled since 2008, partly as a result of domestic minimum-wage policies.3 (The country’s 2011 five-year plan called for 13 percent average annual minimum-wage increases, a rate some provinces have already exceeded.) True, in a few labor-intensive, trade-oriented industries, such as apparel production and consumer electronics, labor-cost changes do tend to tip the balance between different geographic regions; manufacturing employment in Bangladesh and Vietnam, for instance, has benefited from China’s wage surge, even as Chinese manufacturers are seeking to raise productivity.
But these are far from the only implications of rising wages. Just as Henry Ford’s $5 day helped create a new consuming class, so higher wages in China are increasing local demand, thus reinforcing the local-investment choices of OEMs and suppliers. At the same time, there is little evidence of a zero-sum game between China and advanced economies, such as the United States. Rather, the narrowing labor-cost gap reinforces the importance of local demand factors in driving manufacturing employment. Indeed, factor costs often have the greatest impact on location decisions within a region—for example, Airbus moving to Alabama instead of Texas or North Carolina. These costs interact with policy factors, such as infrastructure spending and tax incentives, to shape a region’s overall economic attractiveness.
The impact of energy costs
The price of natural gas in the United States has fallen by two-thirds as gas production from shale deposits rose by 50 percent annually since 2007. A narrow range of sectors—gas-intensive manufacturing, such as the production of petrochemicals, fertilizer, and steel—are benefiting most directly. Some downstream players in the energy value chain have begun shifting investments. Dow Chemical, BASF, and Methanex, for example, have announced plans for new US manufacturing capacity to take advantage of cheaper, abundant energy supplies.
These moves are important for such companies and subsectors; McKinsey Global Institute (MGI) research suggests that by 2020, lower-cost energy could boost US GDP by somewhere between $400 billion and $700 billion.4 But do they presage a dramatic rebalancing of global manufacturing activity? Electricity costs were already lower in the United States than in many countries, including China—which, along with others, also has opportunities to boost its own energy output through hydraulic fracturing. And fossil fuels aren’t the only area where the energy-supply picture is morphing.
Consider, for example, the potential impact of energy-storage technologies, especially lithium-ion batteries and fuel cells, which are becoming more capable and less costly. At the same time, the improving economics of renewable-energy production—particularly solar and wind power—offers manufacturers an expanding range of future supply options. In some developing regions where power grids are unreliable or nonexistent, factory complexes served by distributed solar power may be feasible. Distributed generation is also growing in combined heat–power (CHP) plants, which use heat created in the production process to run steam turbines and generate electricity locally.
None of these is a silver bullet today. But as advances continue over time, more and more companies may become able to ask themselves where they would place major strategic bets if the availability and price of energy were lesser concerns. That too will probably lead back to a focus on local demand patterns. Interestingly, the country representing the greatest source of future demand growth—China—also is actively stimulating the development of a range of new energy sources and storage technologies through a focus on new strategic industries in its five-year plans.5
Technology disruption ahead
Technology is affecting far more than energy dynamics. Advanced robotics, 3-D printers, and the large-scale digitization of operations are poised to alter fundamental assumptions about manufacturing costs and footprints.6 To derive value from these shifts, companies will have to make significant investments and ensure access to hubs of innovation, capable suppliers, and highly skilled workers.
Advanced robo
Sedang diterjemahkan, harap tunggu..
