2.5. Sensory analysisThe tests were carried out in a sensory laborator terjemahan - 2.5. Sensory analysisThe tests were carried out in a sensory laborator Bahasa Indonesia Bagaimana mengatakan

2.5. Sensory analysisThe tests were

2.5. Sensory analysis
The tests were carried out in a sensory laboratory under artificial actinic light, at 25 °C and with air circulation. The sensory panel consisted of eleven highly trained evaluators for coffee beverages. The espresso was prepared, weighing 7 g of the blend and the extraction was performed using a professional espresso machine (1 group Standard, Brasilia, Italy). The development of thefinal product included a quantitative descriptive analysis of the final functional coffee blend (96% roasted coffee, of which 70% Robusta and 30% Arabica, 3% cocoa, 2% coffee silverskin and 1% golden coffee) by Novadelta panel of judges, who rated the organoleptic characteristics of the product by applying a scale of 1 to 5. The sensory panel for quantitative descriptive analysis considered 15 parameters: color, aspect, odor, acidity, bitterness, saltiness, sweetness, metallic, astringent, iodoformflavor, fermented taste, body,flavor, aftertaste and persistence.
2.6. Ochratoxin A analysis
The analytical method for ochratoxin A in the functional coffee blend combined the HPLC separation with enhancedfluorescence detection (Shimadzu LC-10ADVP, Japan), as described byCastellanos-Onorio
et al. (2011). Ten grams of functional coffee blend was extracted for 30 min with 100 mL of 3% methanol/bicarbonate solution (20/80) at 60 °C during 50 min; 5 mL of thefiltered extract was diluted with 40 mL of PBS buffer and cleaned through an immunoaffinity column. The quantification limit is 1.9μgkg−1. This analysis was performed at a portuguese governmental laboratory (ASAE).

2.7. Statistical analysis
The various measured parameters were analyzed using a one-way ANOVA (P≤0.05), followed by a Tukey test for mean comparison (95% confidence level). The software STATISTICA forWindows Release
8.0—Copyright ©StatSoft, INC was used for the performed statistical analyses.

3. Results and discussion
3.1. New coffee blend characteristics
The selection of the roasting degree attended the factors that determine the quality of thefinal beverage. In this context the effectiveness of the antioxidant capacity of extraction of Robusta coffee is considerably higher than in Arabica and the comparable method of extraction through boiling water under high pressure is the most efficient (Budryn & Nebesny, 2008). Accordingly, the Robusta coffees were submitted to a medium–light roasting to preserve their antioxidant compounds, related to the content of total polyphenols, particularly chlorogenic acids. Moreover, the medium roasts are also indicated for the espresso coffees instead of dark and intense roasts, matching the profile of acceptance of consumers. The golden coffee was incorporated to overcome the lack of cocoa chlorogenic acids and the coffee silverskin, as well as to increase these compounds in thefinal product, since the roasting process partially destroys those antioxidant molecules. In fact, by including extracts of green coffee such problem might be override, as previously pointed by Suzuki, Kagawa, Ochiai, Tokimitsu, & Saito (2002), further using alcohol (Thom, 2007)oramixture of both (Madhava-Naidu, Sulochanamma, Sampathu, & Srinivas, 2008). Therefore, the composition of thefinal blend included golden coffee, in order to extract components from its micro particles to the beverage. The extraction with espresso machines also provided an intense extract due to the size of the particles, the temperature and the water pressure.

3.2. Chemical analysis
3.2.1. Caffeine, trigonelline and theobromine
Taking into account the weight of the components of the functional coffee blend, caffeine did not strongly change with the roasting process, whereas trigonelline decreased to about half of the values observed in the green coffee bean (Bicho et al., 2013a). The caffeine content was lower in thefinal functional coffee blend relative to the commercial coffee blends in capsules and the coffee blends in a sealed package with a one-way degassing-valve (Table 2). Caffeine content was higher in the commercial coffee blends in capsules (probably linked to the smaller particle size that improved extraction) and in the coffee blend in a sealed package with a one-way degassing-valve due to the higher content of Robusta. Yet, caffeine extraction in the espresso beverages reached higher values in the functional coffee blend and was more efficient using the DQOOL machine relative to the Briel equipment (Table 3). The caffeine values obtained for our blend ranged between 2.96 and 3.50 mg mL −1 , being higher than those reported by Maeztu et al. (2001), that obtained 2.09 mg mL−1 for Arabica and 2.88 mg mL
−1 for Robusta espresso coffees, but were similar to the range 2.6 to 3.8 mg mL−1 reported byIlly & Vianni (1995). Also, the caffeine levels (standardized to 25 mL) in our blends, varied between 74 and 87.5 mg per cup, were close to the values reported byCasal, Alves, Eulália, & Oliveira (2009)that reported 54–92 mg for a medium espresso coffee of 30 mL cup. It must be pointed that all of our blend formulations corresponded to thefine grinding (milling machine), although a larger proportion of bigger particles was found in the sample of the coffee blend in a sealed package with a one-way degassing-valve and smaller particle size was observed in the commercial coffee blend in capsules (Table 4).
The coffee blends in a sealed package with one-way degassing-valve and the commercial coffee blend in capsules showed a similar trigonelline content when compared to the functional coffee blend
(Table 2). The extraction of trigonelline was similar in both coffee machines, as observed through the results of the functional coffee blend (Table 3). The content of trigonelline was significantly higher in the
functional coffee blend only when compared to the coffee blend in a sealed package with a one-way degassing-valve. The obtained values (between 0.91 and 1.10 mg mL−1) were close to the 1.15 mg mL
−1 found for espresso coffees (Maeztu et al., 2001). Note that, the theobromine content in defatted cocoa powder is usually around 15.5 mg g−1 (Belščak, Komes, Horžić,Ganić,&Karlović, 2009), but the partially defatted cocoa powder used in our blends presented a much higher content (44.2 mg g−1)(Table 5). The caffeine/ theobromine ratio in the functional coffee blend powder was 41:1 (calculated from values inTables 2 and 5), and was likely influenced by the high content of theobromine present in the cocoa used in that blend. Considering the theobromine extraction capability of both tested machines, the beverage obtained from the Briel system presented a somewhat higher content, visually related to the extraction of cocoa through the pores of thefilter holders that is more efficient than in DQOOL (where the retention of cocoa in thefilter pulp is higher).

3.2.2. Chlorogenic acid content
The most abundant phenolic compounds in coffee are chlorogenic acids (CGA) (Bicho, Oliveira, Lidon, Ramalho, & Leitão, 2011b; Trugo & Macrae, 1984). Total CGA ranged from 11.6 mg g−1 for the coffee
blend in a sealed package with a one-way degassing-valve to 13.3 mg g−1 for the functional coffee blend (Table 6). That suggests a CGA loss close to 80% during the roasting process, as compared with the values presented elsewhere for green bean (Bicho et al., 2013a). This CGA loss is somewhat higher than that found by Trugo & Macrae (1984), which pointed to losses ofca. 60% upon mild roasting conditions, or byCorreia, Leitao, & Clifford (1995), which found a degradation between 52 and 77% with extended roasting. Furthermore, differences in the degradation rates of the individual isomers were found, with the stronger losses for CQAs and diCQAs, whereas the opposite occurred with FQAs. In fact, 5-CQA seems to be the chlorogenic acid with higher reduction rates triggered by roasting (Farah, de Paulis, Trugo, & Martin, 2005). Such roasting dependency was also found for other compounds, namely N-β-caffeoyl-tyrosine and p-coumaroyl-N-tyrosine, which resist better to the medium roast than the other CGA (Correia et al., 1995). Therefore, roasting intensity can induce a direct influence on theflavor of thefinal product, as the individual isomers have different sensory properties (Bicho et al., 2013b; Correia et al., 1995; Trugo & Macrae, 1984). Apart from the degree of coffee roasting, the CGA content in the beverage is also species influenced, as their values are higher in Robusta than in Arabica coffee (Ky et al., 2001). The results suggest that the blends had a total CGA content (Table 6) characteristic of industrial medium roasts, where temperature was slightly lower but with a significantly higher roasting time (Correia et al., 1995). The full content of CGA detected in golden coffee was 23.0 mg g−1 (Correia et al., 1995), therefore less than in green coffee of the same species and origin (71.7 mg g−1). Although being a minimally processed product, it shows a significant reduction of CGA, but in a much less extent than
that provoked by the roasting process. Amongst the chlorogenic acids types, considering the total CQAs, FQAs and diCQAs values, only the functional coffee blend showed a higher content when compared to
the coffee blend in a sealed package with one-way degassing-valve and commercial coffee blend in capsules, what was therefore slight reflected in the total CGA content. Typically the content of CGA of the beverages, with 10 g of roasted and ground coffee added to 200 mL of water, can vary between 20
and 300 mg (Richelle, Tavazzi, & Offord, 2001), whereas coffee beverages subjected to dark roasts might show a content varying between 5.26 and 17.1 mg g−1 (Fujioka & Shibamoto, 2008). Yet, that can also
be affected by the beverage producing system. In fact, in the functional coffee blend there was a consistent tendency to a better extraction of all CGAs by DQOOL, when compared to the performance of the Briel machines. Also, all the CGA were more concentrated in the func
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
2.5. Sensory analysis
The tests were carried out in a sensory laboratory under artificial actinic light, at 25 °C and with air circulation. The sensory panel consisted of eleven highly trained evaluators for coffee beverages. The espresso was prepared, weighing 7 g of the blend and the extraction was performed using a professional espresso machine (1 group Standard, Brasilia, Italy). The development of thefinal product included a quantitative descriptive analysis of the final functional coffee blend (96% roasted coffee, of which 70% Robusta and 30% Arabica, 3% cocoa, 2% coffee silverskin and 1% golden coffee) by Novadelta panel of judges, who rated the organoleptic characteristics of the product by applying a scale of 1 to 5. The sensory panel for quantitative descriptive analysis considered 15 parameters: color, aspect, odor, acidity, bitterness, saltiness, sweetness, metallic, astringent, iodoformflavor, fermented taste, body,flavor, aftertaste and persistence.
2.6. Ochratoxin A analysis
The analytical method for ochratoxin A in the functional coffee blend combined the HPLC separation with enhancedfluorescence detection (Shimadzu LC-10ADVP, Japan), as described byCastellanos-Onorio
et al. (2011). Ten grams of functional coffee blend was extracted for 30 min with 100 mL of 3% methanol/bicarbonate solution (20/80) at 60 °C during 50 min; 5 mL of thefiltered extract was diluted with 40 mL of PBS buffer and cleaned through an immunoaffinity column. The quantification limit is 1.9μgkg−1. This analysis was performed at a portuguese governmental laboratory (ASAE).

2.7. Statistical analysis
The various measured parameters were analyzed using a one-way ANOVA (P≤0.05), followed by a Tukey test for mean comparison (95% confidence level). The software STATISTICA forWindows Release
8.0—Copyright ©StatSoft, INC was used for the performed statistical analyses.

3. Results and discussion
3.1. New coffee blend characteristics
The selection of the roasting degree attended the factors that determine the quality of thefinal beverage. In this context the effectiveness of the antioxidant capacity of extraction of Robusta coffee is considerably higher than in Arabica and the comparable method of extraction through boiling water under high pressure is the most efficient (Budryn & Nebesny, 2008). Accordingly, the Robusta coffees were submitted to a medium–light roasting to preserve their antioxidant compounds, related to the content of total polyphenols, particularly chlorogenic acids. Moreover, the medium roasts are also indicated for the espresso coffees instead of dark and intense roasts, matching the profile of acceptance of consumers. The golden coffee was incorporated to overcome the lack of cocoa chlorogenic acids and the coffee silverskin, as well as to increase these compounds in thefinal product, since the roasting process partially destroys those antioxidant molecules. In fact, by including extracts of green coffee such problem might be override, as previously pointed by Suzuki, Kagawa, Ochiai, Tokimitsu, & Saito (2002), further using alcohol (Thom, 2007)oramixture of both (Madhava-Naidu, Sulochanamma, Sampathu, & Srinivas, 2008). Therefore, the composition of thefinal blend included golden coffee, in order to extract components from its micro particles to the beverage. The extraction with espresso machines also provided an intense extract due to the size of the particles, the temperature and the water pressure.

3.2. Chemical analysis
3.2.1. Caffeine, trigonelline and theobromine
Taking into account the weight of the components of the functional coffee blend, caffeine did not strongly change with the roasting process, whereas trigonelline decreased to about half of the values observed in the green coffee bean (Bicho et al., 2013a). The caffeine content was lower in thefinal functional coffee blend relative to the commercial coffee blends in capsules and the coffee blends in a sealed package with a one-way degassing-valve (Table 2). Caffeine content was higher in the commercial coffee blends in capsules (probably linked to the smaller particle size that improved extraction) and in the coffee blend in a sealed package with a one-way degassing-valve due to the higher content of Robusta. Yet, caffeine extraction in the espresso beverages reached higher values in the functional coffee blend and was more efficient using the DQOOL machine relative to the Briel equipment (Table 3). The caffeine values obtained for our blend ranged between 2.96 and 3.50 mg mL −1 , being higher than those reported by Maeztu et al. (2001), that obtained 2.09 mg mL−1 for Arabica and 2.88 mg mL
−1 for Robusta espresso coffees, but were similar to the range 2.6 to 3.8 mg mL−1 reported byIlly & Vianni (1995). Also, the caffeine levels (standardized to 25 mL) in our blends, varied between 74 and 87.5 mg per cup, were close to the values reported byCasal, Alves, Eulália, & Oliveira (2009)that reported 54–92 mg for a medium espresso coffee of 30 mL cup. It must be pointed that all of our blend formulations corresponded to thefine grinding (milling machine), although a larger proportion of bigger particles was found in the sample of the coffee blend in a sealed package with a one-way degassing-valve and smaller particle size was observed in the commercial coffee blend in capsules (Table 4).
The coffee blends in a sealed package with one-way degassing-valve and the commercial coffee blend in capsules showed a similar trigonelline content when compared to the functional coffee blend
(Table 2). The extraction of trigonelline was similar in both coffee machines, as observed through the results of the functional coffee blend (Table 3). The content of trigonelline was significantly higher in the
functional coffee blend only when compared to the coffee blend in a sealed package with a one-way degassing-valve. The obtained values (between 0.91 and 1.10 mg mL−1) were close to the 1.15 mg mL
−1 found for espresso coffees (Maeztu et al., 2001). Note that, the theobromine content in defatted cocoa powder is usually around 15.5 mg g−1 (Belščak, Komes, Horžić,Ganić,&Karlović, 2009), but the partially defatted cocoa powder used in our blends presented a much higher content (44.2 mg g−1)(Table 5). The caffeine/ theobromine ratio in the functional coffee blend powder was 41:1 (calculated from values inTables 2 and 5), and was likely influenced by the high content of theobromine present in the cocoa used in that blend. Considering the theobromine extraction capability of both tested machines, the beverage obtained from the Briel system presented a somewhat higher content, visually related to the extraction of cocoa through the pores of thefilter holders that is more efficient than in DQOOL (where the retention of cocoa in thefilter pulp is higher).

3.2.2. Chlorogenic acid content
The most abundant phenolic compounds in coffee are chlorogenic acids (CGA) (Bicho, Oliveira, Lidon, Ramalho, & Leitão, 2011b; Trugo & Macrae, 1984). Total CGA ranged from 11.6 mg g−1 for the coffee
blend in a sealed package with a one-way degassing-valve to 13.3 mg g−1 for the functional coffee blend (Table 6). That suggests a CGA loss close to 80% during the roasting process, as compared with the values presented elsewhere for green bean (Bicho et al., 2013a). This CGA loss is somewhat higher than that found by Trugo & Macrae (1984), which pointed to losses ofca. 60% upon mild roasting conditions, or byCorreia, Leitao, & Clifford (1995), which found a degradation between 52 and 77% with extended roasting. Furthermore, differences in the degradation rates of the individual isomers were found, with the stronger losses for CQAs and diCQAs, whereas the opposite occurred with FQAs. In fact, 5-CQA seems to be the chlorogenic acid with higher reduction rates triggered by roasting (Farah, de Paulis, Trugo, & Martin, 2005). Such roasting dependency was also found for other compounds, namely N-β-caffeoyl-tyrosine and p-coumaroyl-N-tyrosine, which resist better to the medium roast than the other CGA (Correia et al., 1995). Therefore, roasting intensity can induce a direct influence on theflavor of thefinal product, as the individual isomers have different sensory properties (Bicho et al., 2013b; Correia et al., 1995; Trugo & Macrae, 1984). Apart from the degree of coffee roasting, the CGA content in the beverage is also species influenced, as their values are higher in Robusta than in Arabica coffee (Ky et al., 2001). The results suggest that the blends had a total CGA content (Table 6) characteristic of industrial medium roasts, where temperature was slightly lower but with a significantly higher roasting time (Correia et al., 1995). The full content of CGA detected in golden coffee was 23.0 mg g−1 (Correia et al., 1995), therefore less than in green coffee of the same species and origin (71.7 mg g−1). Although being a minimally processed product, it shows a significant reduction of CGA, but in a much less extent than
that provoked by the roasting process. Amongst the chlorogenic acids types, considering the total CQAs, FQAs and diCQAs values, only the functional coffee blend showed a higher content when compared to
the coffee blend in a sealed package with one-way degassing-valve and commercial coffee blend in capsules, what was therefore slight reflected in the total CGA content. Typically the content of CGA of the beverages, with 10 g of roasted and ground coffee added to 200 mL of water, can vary between 20
and 300 mg (Richelle, Tavazzi, & Offord, 2001), whereas coffee beverages subjected to dark roasts might show a content varying between 5.26 and 17.1 mg g−1 (Fujioka & Shibamoto, 2008). Yet, that can also
be affected by the beverage producing system. In fact, in the functional coffee blend there was a consistent tendency to a better extraction of all CGAs by DQOOL, when compared to the performance of the Briel machines. Also, all the CGA were more concentrated in the func
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
2.5. Analisis sensorik
Tes dilakukan di laboratorium sensorik di bawah cahaya actinic buatan, pada 25 ° C dan dengan sirkulasi udara. Panel sensorik terdiri dari sebelas evaluator yang sangat terlatih untuk minuman kopi. Espresso disiapkan, dengan berat 7 gram campuran dan ekstraksi dilakukan dengan menggunakan mesin espresso profesional (1 kelompok Standard, Brasilia, Italia). Pengembangan produk thefinal termasuk analisis deskriptif kuantitatif dari campuran kopi fungsional akhir (96% kopi panggang, dimana 70% Robusta dan Arabika 30%, 3% kakao, 2% kopi silverskin dan 1% kopi emas) oleh Novadelta panel hakim, yang diberi karakteristik organoleptik produk dengan menerapkan skala 1 sampai 5. Panel sensorik untuk analisis deskriptif kuantitatif dianggap 15 parameter: warna, aspek, bau, keasaman, kepahitan, rasa asin, manis, logam, astringent, iodoformflavor, fermentasi rasa, tubuh, rasa, aftertaste dan ketekunan.
2.6. Ochratoxin analisis Sebuah
Metode analisis untuk ochratoxin A dalam campuran kopi fungsional gabungan pemisahan HPLC dengan deteksi enhancedfluorescence (Shimadzu LC-10ADVP, Jepang), seperti yang dijelaskan byCastellanos-Onorio
et al. (2011). Sepuluh gram campuran kopi fungsional diekstraksi selama 30 menit dengan 100 ml 3% metanol / larutan bikarbonat (20/80) pada 60 ° C selama 50 menit; 5 mL ekstrak thefiltered diencerkan dengan 40 mL PBS penyangga dan dibersihkan melalui kolom immunoaffinity. Batas kuantifikasi adalah 1.9μgkg-1. Analisis ini dilakukan di laboratorium pemerintah Portugis (ASAE). 2.7. Analisis statistik Berbagai parameter yang diukur dianalisis menggunakan ANOVA satu arah (P ≤ 0,05), diikuti dengan uji Tukey untuk mean perbandingan (tingkat kepercayaan 95%). Perangkat lunak STATISTICA forWindows Rilis 8.0-Copyright © StatSoft, INC digunakan untuk analisis statistik yang dilakukan. 3. Hasil dan diskusi 3.1. Baru karakteristik kopi campuran Pemilihan tingkat pemanggangan menghadiri faktor yang menentukan kualitas minuman thefinal. Dalam konteks ini efektivitas kapasitas antioksidan ekstraksi kopi Robusta adalah jauh lebih tinggi daripada di Arabica dan metode sebanding ekstraksi melalui air mendidih di bawah tekanan tinggi adalah yang paling efisien (Budryn & Nebesny, 2008). Dengan demikian, kopi Robusta diserahkan ke memanggang menengah-ringan untuk menjaga senyawa antioksidan, yang berkaitan dengan isi total polifenol, khususnya asam chlorogenic. Selain itu, daging panggang menengah juga diindikasikan untuk kopi espresso, bukan daging panggang gelap dan intens, cocok dengan profil penerimaan konsumen. Kopi emas didirikan untuk mengatasi kekurangan asam chlorogenic kakao dan kopi silverskin, serta meningkatkan senyawa ini dalam produk thefinal, karena proses pemanggangan sebagian menghancurkan molekul-molekul antioksidan. Bahkan, dengan memasukkan ekstrak kopi hijau masalah tersebut mungkin menimpa, seperti yang sebelumnya ditunjukkan oleh Suzuki, Kagawa, Ochiai, Tokimitsu, & Saito (2002), lebih lanjut menggunakan alkohol (Thom, 2007) oramixture kedua (Madhava-Naidu, Sulochanamma , Sampathu, & Srinivas, 2008). Oleh karena itu, komposisi campuran thefinal termasuk kopi emas, untuk mengekstrak komponen dari partikel mikro untuk minuman. Ekstraksi dengan mesin espresso juga memberikan ekstrak intens karena ukuran partikel, suhu dan tekanan air. 3.2. Analisis kimia 3.2.1. Kafein, trigonelina dan theobromine Dengan mempertimbangkan berat komponen campuran kopi fungsional, kafein tidak kuat berubah dengan proses pemanggangan, sedangkan trigonelina menurun menjadi sekitar setengah dari nilai-nilai yang diamati dalam biji kopi hijau (Bicho et al., 2013a). Kandungan kafein lebih rendah pada thefinal fungsional kopi campuran relatif terhadap campuran komersial kopi di kapsul dan campuran kopi dalam paket tertutup dengan satu arah degassing-valve (Tabel 2). Kandungan kafein lebih tinggi pada campuran kopi komersial dalam bentuk kapsul (mungkin terkait dengan ukuran partikel yang lebih kecil yang meningkatkan ekstraksi) dan dalam campuran kopi dalam paket tertutup dengan satu arah degassing-valve karena kandungan tinggi Robusta. Namun, ekstraksi kafein dalam minuman espresso mencapai nilai yang lebih tinggi dalam campuran kopi fungsional dan lebih efisien menggunakan mesin DQOOL relatif terhadap peralatan Briel (Tabel 3). Nilai kafein diperoleh untuk campuran kami berkisar antara 2,96 dan 3,50 mg mL -1, yang lebih tinggi dari yang dilaporkan oleh Maeztu et al. (2001), yang diperoleh 2.09 mg mL-1 untuk Arabica dan 2,88 mg mL -1 untuk kopi espresso Robusta, tetapi mirip dengan kisaran 2,6-3,8 mg mL-1 dilaporkan byIlly & Vianni (1995). Juga, tingkat kafein (standar untuk 25 mL) dalam campuran kami, bervariasi antara 74 dan 87,5 mg per cangkir, yang dekat dengan nilai-nilai yang dilaporkan byCasal, Alves, Eulália, & Oliveira (2009) yang melaporkan 54-92 mg untuk media kopi espresso dari 30 mL cup. Harus menunjukkan bahwa semua formulasi campuran kami berhubungan dengan thefine grinding (mesin penggilingan), meskipun proporsi yang lebih besar dari partikel yang lebih besar ditemukan dalam sampel dari campuran kopi dalam paket tertutup dengan satu arah degassing-valve dan partikel yang lebih kecil Ukuran diamati dalam kopi campuran komersial dalam bentuk kapsul (Tabel 4). Campuran kopi dalam paket disegel dengan satu arah degassing-valve dan campuran kopi komersial dalam kapsul menunjukkan kandungan trigonelina yang sama jika dibandingkan dengan campuran kopi fungsional (Tabel 2). Ekstraksi trigonelina adalah serupa pada kedua mesin kopi, seperti yang diamati melalui hasil campuran kopi fungsional (Tabel 3). Isi trigonelina secara signifikan lebih tinggi dalam campuran kopi fungsional hanya bila dibandingkan dengan campuran kopi dalam paket tertutup dengan satu arah degassing-katup. Nilai yang diperoleh (antara 0,91 dan 1,10 mg mL-1) yang dekat dengan 1,15 mg mL -1 ditemukan untuk kopi espresso (Maeztu et al., 2001). Perhatikan bahwa, kandungan theobromine dalam defatted kakao bubuk biasanya sekitar 15,5 mg-g 1 (Belščak, KOMES, Horžić, bawang putih, dan Karlovic, 2009), tetapi sebagian dipisahkan kakao bubuk yang digunakan dalam campuran kami disajikan kandungan yang jauh lebih tinggi (44,2 mg -g 1) (Tabel 5). Rasio kafein / theobromine dalam kopi bubuk campuran fungsional adalah 41: 1 (dihitung dari nilai-nilai inTables 2 dan 5), dan kemungkinan dipengaruhi oleh tingginya kandungan theobromine hadir dalam kakao yang digunakan dalam campuran itu. Mengingat kemampuan ekstraksi theobromine dari kedua mesin yang diuji, minuman yang diperoleh dari sistem Briel disajikan kandungan agak lebih tinggi, secara visual terkait dengan ekstraksi kakao melalui pori-pori pemegang thefilter yang lebih efisien daripada di DQOOL (di mana retensi kakao di thefilter bubur lebih tinggi). 3.2.2. Kandungan asam klorogenat Senyawa fenolik yang paling melimpah di kopi adalah asam chlorogenic (CGA) (Bicho, Oliveira, Lidon, Ramalho, & Leitão, 2011b; Trugo & Macrae, 1984). Total CGA berkisar antara 11,6 mg g-1 untuk kopi campuran dalam paket tertutup dengan satu arah degassing-katup 13,3 mg g-1 untuk campuran kopi fungsional (Tabel 6). Itu menunjukkan kerugian CGA hampir 80% selama proses pemanggangan, dibandingkan dengan nilai-nilai yang disajikan di tempat lain untuk kacang hijau (Bicho et al., 2013a). Loss CGA ini agak lebih tinggi daripada yang ditemukan oleh Trugo & Macrae (1984), yang menunjukkan kerugian ofca. 60% pada kondisi memanggang ringan, atau byCorreia, Leitao, & Clifford (1995), yang menemukan degradasi antara 52 dan 77% dengan memanggang diperpanjang. Selanjutnya, perbedaan dalam tingkat degradasi isomer individu yang ditemukan, dengan kerugian yang lebih kuat untuk CQAs dan diCQAs, sedangkan sebaliknya terjadi dengan FQAs. Bahkan, 5-CQA tampaknya menjadi asam klorogenat dengan tarif yang lebih tinggi pengurangan dipicu oleh memanggang (Farah, de Paulis, Trugo, & Martin, 2005). Memanggang ketergantungan tersebut juga ditemukan untuk senyawa lainnya, yaitu N-β-caffeoyl-tirosin dan p-coumaroyl-N-tirosin, yang menolak lebih baik untuk panggang menengah dari yang lain CGA (Correia et al., 1995). Oleh karena itu, memanggang intensitas dapat menyebabkan pengaruh langsung terhadap theflavor produk thefinal, sebagai isomer individu memiliki sifat sensori yang berbeda (Bicho et al, 2013b;.. Correia et al, 1995; Trugo & Macrae, 1984). Terlepas dari tingkat kopi memanggang, kandungan CGA dalam minuman juga spesies dipengaruhi, sebagai nilai-nilai mereka lebih tinggi di Robusta dibandingkan kopi Arabika (Ky et al., 2001). Hasil penelitian menunjukkan bahwa campuran memiliki total CGA konten (Tabel 6) karakteristik daging panggang menengah industri, di mana suhu sedikit lebih rendah tetapi dengan jauh lebih tinggi waktu pemanggangan (Correia et al., 1995). Isi penuh CGA terdeteksi dalam kopi emas adalah 23,0 mg g-1 (Correia et al., 1995), oleh karena itu kurang dari kopi hijau spesies dan asal (71,7 mg g-1) yang sama. Meskipun menjadi produk minimal diproses, itu menunjukkan penurunan yang signifikan dari CGA, tetapi dalam tingkat yang jauh kurang dari yang dipicu oleh proses pemanggangan. Di antara jenis asam chlorogenic, mengingat total CQAs, FQAs dan diCQAs nilai, hanya campuran kopi fungsional menunjukkan konten yang lebih tinggi bila dibandingkan dengan campuran kopi dalam paket tertutup dengan satu arah degassing-valve dan campuran kopi komersial dalam bentuk kapsul, apa Oleh karena itu sedikit tercermin dalam total konten CGA. Biasanya isi CGA dari minuman, dengan 10 g panggang dan kopi bubuk yang ditambahkan ke 200 ml air, dapat bervariasi antara 20 dan 300 mg (Richelle, Tavazzi, & Offord, 2001), sedangkan minuman kopi mengalami panggang gelap mungkin menunjukkan konten yang bervariasi antara 5,26 dan 17,1 mg g-1 (Fujioka & Shibamoto, 2008). Namun, yang juga dapat dipengaruhi oleh minuman memproduksi sistem. Bahkan, dalam campuran kopi fungsional ada kecenderungan yang konsisten untuk ekstraksi yang lebih baik dari semua CGAs oleh DQOOL, bila dibandingkan dengan kinerja mesin Briel. Juga, semua CGA lebih terkonsentrasi di func yang
























Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2024 I Love Translation. All reserved.

E-mail: