DENSITY AND CONTRASTDisplay density and contrast differences are varie terjemahan - DENSITY AND CONTRASTDisplay density and contrast differences are varie Bahasa Indonesia Bagaimana mengatakan

DENSITY AND CONTRASTDisplay density

DENSITY AND CONTRAST
Display density and contrast differences are varied with widow level and width controls. Most CT images can demonstrate contrast differences of as little as 4 percent (4 HU), as compared to a minimum of 10 percent for a diagnostic radiograph. Appropriate CT window widths are shown in table 41-3
RESOLUTION
the resulotion of the CT image depends on pixel, voxel and matrix size. High contrast objects 1.5 times the pixel size or larger can be imaged reliably. For example, a pixel size of 0.5 mm can resolve an object 0,75 mm in size. Low contrast objects may require a larger pixel size to permit the detectors to provide sufficient data to reach a visible difference between the attenuation coefficients. Therefore low contrast objects may actually be seen better with a larger pixel size, although the total resolution is reduced. The current spatial resolution possible is about 0.35 mm, as compared to 0.25 mm and better with diagnostic radiography. However, this resolution is not possible under routine scanning conditions.
VOXEL, PIXEL AND MATRIX SIZE
discussion of CT imaging detail must consider voxel, pixel and matrix size. It is possible to have pixels and matrix size equal yet the voxel width may have a considerable effect on image quality. Matrix size offered on CT units have included 256 x 256, 320 x 320, 360 x 360 and 512 x 512. Because most CT images are processed and displayed with a circular field, the actual number of image pixels is less than if the matrix were square. For example, a 512 x 512 circular field matrix has slightly over 200,000 pixels. Most radiologist consider the diagnostic information avalaible matrix sizes of 256 x 256 and less to be inferior.
Voxel width may be varied between 8 mm and 13 mm. A common voxel size might be 1 mm x 1 mm x 10 mm with 10mm representing the voxel width. The 20 percent additional tissue volume of a 13 mm voxel requires 60 percent more radiation exposure to produce an image of camparable quality. Therefore patient dose considerations in CT are similar to those in diagnostic radiography. Improved image quality can only be achieved through increased exposure to the patient.
INTERFACE ARTIFACTS
depending on the mathematical algorithm used, imaging aberrations displayed as density differences may occur when two objects have more than a 60 percent difference in attenuatuion coefficients. These artifacts are called undershoot and overshoot. Any object of greatly different contrans, such as metallic surgical slips, bullets, an old contrast medium and air, is likely to cause a star pattern artifact. The effect can be somewhat modified by using a larger matrix. However, different reconstruction algorithms that mathematically filter or compensate for the effect have been designed for various body parts. For example, a soft tissue algorithm is useless during examination of the inner ear. A special bone algorithm is required to produce useful information when a number of small bony structures are in close proximity to one another.
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
DENSITY AND CONTRAST
Display density and contrast differences are varied with widow level and width controls. Most CT images can demonstrate contrast differences of as little as 4 percent (4 HU), as compared to a minimum of 10 percent for a diagnostic radiograph. Appropriate CT window widths are shown in table 41-3
RESOLUTION
the resulotion of the CT image depends on pixel, voxel and matrix size. High contrast objects 1.5 times the pixel size or larger can be imaged reliably. For example, a pixel size of 0.5 mm can resolve an object 0,75 mm in size. Low contrast objects may require a larger pixel size to permit the detectors to provide sufficient data to reach a visible difference between the attenuation coefficients. Therefore low contrast objects may actually be seen better with a larger pixel size, although the total resolution is reduced. The current spatial resolution possible is about 0.35 mm, as compared to 0.25 mm and better with diagnostic radiography. However, this resolution is not possible under routine scanning conditions.
VOXEL, PIXEL AND MATRIX SIZE
discussion of CT imaging detail must consider voxel, pixel and matrix size. It is possible to have pixels and matrix size equal yet the voxel width may have a considerable effect on image quality. Matrix size offered on CT units have included 256 x 256, 320 x 320, 360 x 360 and 512 x 512. Because most CT images are processed and displayed with a circular field, the actual number of image pixels is less than if the matrix were square. For example, a 512 x 512 circular field matrix has slightly over 200,000 pixels. Most radiologist consider the diagnostic information avalaible matrix sizes of 256 x 256 and less to be inferior.
Voxel width may be varied between 8 mm and 13 mm. A common voxel size might be 1 mm x 1 mm x 10 mm with 10mm representing the voxel width. The 20 percent additional tissue volume of a 13 mm voxel requires 60 percent more radiation exposure to produce an image of camparable quality. Therefore patient dose considerations in CT are similar to those in diagnostic radiography. Improved image quality can only be achieved through increased exposure to the patient.
INTERFACE ARTIFACTS
depending on the mathematical algorithm used, imaging aberrations displayed as density differences may occur when two objects have more than a 60 percent difference in attenuatuion coefficients. These artifacts are called undershoot and overshoot. Any object of greatly different contrans, such as metallic surgical slips, bullets, an old contrast medium and air, is likely to cause a star pattern artifact. The effect can be somewhat modified by using a larger matrix. However, different reconstruction algorithms that mathematically filter or compensate for the effect have been designed for various body parts. For example, a soft tissue algorithm is useless during examination of the inner ear. A special bone algorithm is required to produce useful information when a number of small bony structures are in close proximity to one another.
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
KEPADATAN DAN KONTRAS
perbedaan kepadatan Tampilan dan kontras yang bervariasi dengan tingkat janda dan kontrol lebar. Kebanyakan gambar CT dapat menunjukkan perbedaan kontras sesedikit 4 persen (4 HU), dibandingkan dengan minimal 10 persen untuk radiografi diagnostik. Tepat jendela CT lebar ditunjukkan dalam tabel 41-3
RESOLUSI
yang resulotion dari CT gambar tergantung pada pixel, voxel dan ukuran matriks. Kontras tinggi benda 1,5 kali ukuran pixel atau lebih besar dapat dicitrakan andal. Misalnya, ukuran pixel 0,5 mm dapat mengatasi obyek 0,75 mm. Benda kontras rendah mungkin memerlukan ukuran piksel yang lebih besar untuk memungkinkan detektor untuk menyediakan data yang cukup untuk mencapai perbedaan yang terlihat antara koefisien atenuasi. Oleh karena itu benda kontras rendah sebenarnya bisa melihat lebih baik dengan ukuran pixel yang lebih besar, meskipun total resolusi berkurang. Resolusi spasial saat ini mungkin adalah sekitar 0,35 mm, dibandingkan dengan 0,25 mm dan lebih baik dengan radiografi diagnostik. Namun, resolusi ini tidak mungkin di bawah kondisi pemindaian rutin.
voxel, PIXEL DAN MATRIX UKURAN
pembahasan CT pencitraan rinci harus mempertimbangkan voxel, pixel dan ukuran matriks. Hal ini dimungkinkan untuk memiliki piksel dan ukuran matriks yang sama namun lebar voxel mungkin memiliki pengaruh yang besar pada kualitas gambar. Ukuran Matrix ditawarkan pada CT unit telah mencantumkan 256 x 256, 320 x 320, 360 x 360 dan 512 x 512. Karena kebanyakan CT gambar diproses dan ditampilkan dengan bidang melingkar, jumlah sebenarnya piksel citra kurang dari jika matriks yang persegi. Sebagai contoh, 512 x 512 bidang melingkar matriks memiliki sedikit lebih dari 200.000 piksel. Kebanyakan ahli radiologi mempertimbangkan informasi diagnostik ukuran matriks avalaible dari 256 x 256 dan kurang menjadi rendah.
Voxel lebar dapat bervariasi antara 8 mm dan 13 mm. Sebuah ukuran voxel umum mungkin 1 mm x 1 mm x 10 mm dengan 10mm mewakili lebar voxel. 20 persen volume jaringan tambahan dari 13 mm voxel membutuhkan paparan radiasi 60 persen lebih untuk menghasilkan gambar berkualitas camparable. Oleh karena itu pertimbangan dosis pasien di CT mirip dengan yang di radiografi diagnostik. Peningkatan kualitas gambar hanya dapat dicapai melalui peningkatan paparan pasien.
ARTEFAK INTERFACE
tergantung pada algoritma matematika yang digunakan, penyimpangan pencitraan ditampilkan sebagai perbedaan densitas dapat terjadi ketika dua benda memiliki lebih dari perbedaan 60 persen pada koefisien attenuatuion. Artefak ini disebut undershoot dan overshoot. Setiap objek dari CONTRANS sangat berbeda, seperti slip logam bedah, peluru, media kontras tua dan udara, kemungkinan akan menyebabkan pola bintang artefak. Efeknya dapat agak dimodifikasi dengan menggunakan matriks yang lebih besar. Namun, algoritma rekonstruksi yang berbeda yang secara matematis menyaring atau mengkompensasi efek telah dirancang untuk berbagai bagian tubuh. Sebagai contoh, algoritma jaringan lunak berguna selama pemeriksaan telinga bagian dalam. Algoritma tulang khusus yang diperlukan untuk menghasilkan informasi yang berguna ketika sejumlah struktur kecil tulang berada di dekat satu sama lain.
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2025 I Love Translation. All reserved.

E-mail: