ARCHITECTURAL TYPESIn Chapter 2, we introduced five common and major t terjemahan - ARCHITECTURAL TYPESIn Chapter 2, we introduced five common and major t Bahasa Indonesia Bagaimana mengatakan

ARCHITECTURAL TYPESIn Chapter 2, we

ARCHITECTURAL TYPES
In Chapter 2, we introduced five common and major types of architecture. As indicated earlier,
these types essentially differ in the way data is integrated and stored and also in the way
“data warehouses” and “data marts” are related.
At this point, we would like to revisit these architectural types so that you may view our
entire discussion of architecture in this chapter and see how it would apply to each of these
five common types of architecture. Note the arrangement and linkage of the “data warehouse”
and “data marts” in each case wherever applicable. Also, notice how the architectural
arrangements facilitate the intended data flows as discussed earlier in this chapter.
Centralized Corporate Data Warehouse
In this architecture type, a centralized enterprise data warehouse is present. There are no data
marts, whether dependent or independent. Therefore all information delivery is from the
centralized data warehouse.
See Figure 7-7 for a high-level overview of the components. Note the flow of data from
source systems to staging area, then to the normalized central data warehouse, and thereafter
to end-users as business intelligence.
Independent Data Marts
In this architecture type, the data warehouse is really a collection of unconnected, disparate
data marts, each serving a specific department or purpose. These data marts in such organizations
usually evolve over time without any overall planning. Each data mart delivers
information to its own group of users.
See Figure 7-8 for a high-level overview of the components. Note the flow of data from
source systems to staging area, then to the various independent data marts, and thereafter
to individual groups of end-users as business intelligence. In many cases, data staging
functions and movement to each data mart may be carried out separately.
Federated
This architecture type appears to be similar to the type with independent data marts. But
there is one big difference. In the federated architectural type, common data elements
in the various data marts and even data warehouses that compose the federation are integrated
physically or logically. The goal is to strive for a single version of truth for the organization;
a centralized enterprise data warehouse is present. There are no data marts, whether
dependent or independent. Therefore all information delivery is from the centralized data
warehouse.
See Figure 7-9 for a high-level overview of the components. Note the flow of data
from the federation of data marts, data warehouses, and other sources to the end-users as
business intelligence. In between, logical or physical integration of common data elements
takes place.
Hub-and-Spoke
In this architecture type, a centralized enterprise data warehouse is present. In addition,
there are data marts that depend on the enterprise data warehouse for data feed.
Information delivery can, therefore, be both from the centralized data warehouse and the
dependent data marts.
See Figure 7-10 for a high-level overview of the components. Note the flow of data
from source systems to the staging area, then to the normalized central data warehouse,
and thereafter to end-users as business intelligence from both the central data warehouse
and the dependent data marts.
Data-Mart Bus
In this architecture type, no distinct, single data warehouse exists. The collection of all the
data marts form the data warehouse because the data marts are conformed “super-marts”
because the business dimensions and measured facts are conformed and linked among
the data marts. All information delivery is from the conglomeration of the conformed data
marts. These data marts may serve the entire enterprise, not just single departments.
See Figure 7-11 for a high-level overview of the components. Note the flow of data
from source systems to staging area, then to the various conformed data marts, thereafter
to end-users as business intelligence from the conformed data marts.
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
JENIS ARSITEKTURDi Bab 2, kami memperkenalkan lima jenis Umum dan besar arsitektur. Seperti yang ditunjukkan sebelumnya,jenis ini pada dasarnya berbeda dalam cara data terintegrasi dan disimpan dan juga dalam cara"gudang data" dan "data mart" yang terkait.Pada titik ini, kami ingin kembali jenis arsitektur sehingga Anda dapat melihat kamiseluruh diskusi arsitektur di Bab ini dan melihat bagaimana ini akan berlaku untuk masing-masinglima jenis umum dari arsitektur. Catatan pengaturan dan kaitan "gudang data"dan "data mart" dalam setiap kasus manapun berlaku. Juga, perhatikan bagaimana arsitekturpengaturan memfasilitasi dimaksudkan data mengalir seperti yang dibahas sebelumnya dalam bab ini.Gudang Data terpusat perusahaanDalam jenis arsitektur ini, ada gudang data terpusat perusahaan. Ada tidak ada dataMart, Apakah tergantung atau independen. Oleh karena itu semua informasi pengiriman adalah dariGudang data terpusat.Lihat gambar 7-7 untuk gambaran yang tingkat tinggi komponen. Perhatikan aliran data darisumber sistem ke area stage, lalu ke gudang menormalkan pusat data, dan sesudahnyauntuk pengguna akhir sebagai intelijen bisnis.Independen Data MartDalam jenis arsitektur ini, gudang data adalah benar-benar koleksi tidak terhubung, berbedaData Mart, masing-masing menyajikan Departemen tertentu atau tujuan. Ini data Mart dalam organisasi tersebutbiasanya berkembang dari waktu ke waktu tanpa keseluruhan perencanaan. Setiap data mart memberikaninformasi untuk kelompok pengguna.Lihat gambar 7-8 untuk gambaran yang tingkat tinggi komponen. Perhatikan aliran data darisumber sistem ke area stage, lalu ke berbagai independen data mart, dan sesudahnyamasing-masing kelompok pengguna sebagai intelijen bisnis. Dalam banyak kasus, data pementasanfungsi dan gerakan untuk masing-masing data mart dapat dilakukan secara terpisah.FederasiJenis arsitektur ini tampaknya mirip dengan jenis data independen Mart. Tapiada satu perbedaan besar. Dalam jenis arsitektur Federasi, elemen data umumdalam berbagai data Mart dan bahkan data gudang yang membentuk federasi yang terintegrasisecara fisik atau secara logis. Tujuannya adalah untuk berjuang untuk satu versi dari kebenaran bagi organisasi;Ada sebuah gudang data terpusat perusahaan. Ada tidak ada data mart, Apakahtergantung atau independen. Oleh karena itu semua informasi pengiriman adalah dari data terpusatgudang.Lihat gambar 7-9 untuk gambaran yang tingkat tinggi komponen. Catatan aliran datadari Federasi data mart, gudang data dan sumber lain untuk pengguna akhir sebagaiintelijen bisnis. Di antara, integrasi Logis atau fisik dari elemen data umumberlangsung.Hub-dan-berbicaraDalam jenis arsitektur ini, ada gudang data terpusat perusahaan. Sebagai tambahanada data Mart yang bergantung pada gudang data perusahaan untuk data feed.Pengiriman informasi, oleh karena itu, dapat baik dari gudang data terpusat dantergantung data Mart.Lihat gambar 7-10 untuk gambaran yang tingkat tinggi komponen. Catatan aliran datadari sumber sistem ke staging area, maka untuk menormalkan pusat data gudang,dan sesudahnya untuk end-user sebagai intelijen bisnis dari kedua gudang pusat datadan tergantung data Mart.Data-Mart BusDalam tipe arsitektur, gudang data yang berbeda, satu tidak ada. Koleksi semuaData Mart membentuk gudang data karena data Mart serupa "Super Mart"karena bisnis dimensi dan diukur fakta serupa dan terhubung antaradata Mart. Semua informasi pengiriman adalah dari konglomerasi data conformedMart. Mart data ini dapat melayani seluruh perusahaan, tidak hanya satu departemen.Lihat gambar 7-11 untuk gambaran yang tingkat tinggi komponen. Catatan aliran datadari sumber sistem ke area stage, untuk berbagai kemudianya data mart, kemudianuntuk pengguna akhir sebagai intelijen bisnis dari Mart data yang serupa.
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
JENIS ARSITEKTUR
Dalam Bab 2, kami memperkenalkan lima jenis umum dan utama arsitektur. Seperti yang ditunjukkan sebelumnya,
jenis ini pada dasarnya berbeda dalam cara data terintegrasi dan disimpan dan juga dalam cara
"gudang data" dan "data mart" terkait.
Pada titik ini, kami ingin kembali ini jenis arsitektur sehingga Anda dapat melihat kami
diskusi seluruh arsitektur dalam bab ini dan melihat bagaimana hal itu akan berlaku untuk masing-masing
lima jenis umum dari arsitektur. Perhatikan susunan dan keterkaitan dari "gudang data"
dan "data mart" dalam setiap kasus di mana pun yang berlaku. Juga, perhatikan bagaimana arsitektur
pengaturan memfasilitasi data yang dimaksud arus seperti yang dibahas sebelumnya dalam bab ini.
Sentralisasi Data Perusahaan Gudang
Dalam jenis arsitektur ini, sebuah gudang data perusahaan terpusat hadir. Tidak ada data
mart, apakah tergantung atau independen. Oleh karena itu semua pengiriman informasi dari
gudang data terpusat.
Lihat Gambar 7-7 untuk gambaran tingkat tinggi dari komponen. Perhatikan aliran data dari
sistem sumber ke staging area, kemudian ke normalisasi data warehouse pusat, dan setelah itu
ke pengguna akhir seperti intelijen bisnis.
Independent Data Mart
Dalam jenis arsitektur ini, data warehouse adalah benar-benar koleksi berhubungan, berbeda
Data mart, masing-masing melayani departemen atau tujuan tertentu. Ini data mart dalam organisasi seperti
biasanya berkembang dari waktu ke waktu tanpa perencanaan secara keseluruhan. Setiap data mart memberikan
informasi kepada kelompok sendiri pengguna.
Lihat Gambar 7-8 untuk gambaran tingkat tinggi dari komponen. Perhatikan aliran data dari
sistem sumber ke staging area, kemudian ke berbagai data mart independen, dan setelah itu
kelompok individu pengguna akhir sebagai intelijen bisnis. Dalam banyak kasus, data pementasan
fungsi dan gerakan untuk setiap data mart dapat dilakukan secara terpisah.
Federated
jenis arsitektur ini tampaknya mirip dengan tipe dengan data mart independen. Tapi
ada satu perbedaan besar. Dalam jenis arsitektur federasi, elemen data umum
di berbagai data mart dan bahkan gudang data yang membentuk federasi yang terintegrasi
secara fisik atau logis. Tujuannya adalah untuk berjuang untuk satu versi kebenaran bagi organisasi;
sebuah gudang data perusahaan terpusat hadir. Tidak ada data mart, apakah
tergantung atau independen. Oleh karena itu semua pengiriman informasi dari data terpusat
warehouse.
Lihat Gambar 7-9 untuk gambaran tingkat tinggi dari komponen. Perhatikan aliran data
dari federasi data mart, gudang data, dan sumber-sumber lain ke pengguna akhir sebagai
intelijen bisnis. Di antara, integrasi logis atau fisik elemen data umum
terjadi.
Hub-dan-Spoke
Dalam jenis arsitektur ini, sebuah gudang data perusahaan terpusat hadir. Selain itu,
ada data mart yang bergantung pada gudang data perusahaan untuk data feed.
Pengiriman informasi dapat, karena itu, menjadi baik dari gudang data terpusat dan
data mart tergantung.
Lihat Gambar 7-10 untuk gambaran tingkat tinggi dari komponen. Perhatikan aliran data
dari sistem sumber ke area stage, kemudian ke normalisasi data warehouse pusat,
dan setelah itu ke pengguna akhir seperti intelijen bisnis dari kedua gudang data pusat
dan data mart tergantung.
Data-Mart Bus
Pada jenis arsitektur ini , tidak ada yang berbeda, data tunggal gudang ada. Pengumpulan semua
data mart membentuk data warehouse karena data mart yang serupa "super-mart"
karena dimensi bisnis dan fakta-fakta yang diukur sesuai dan terkait antara
satu data mart. Semua pengiriman informasi dari konglomerasi data sesuai
mart. Ini data mart dapat melayani seluruh perusahaan, bukan hanya departemen tunggal.
Lihat Gambar 7-11 untuk gambaran tingkat tinggi dari komponen. Perhatikan aliran data
dari sistem sumber ke staging area, kemudian ke berbagai data mart sesuai, setelah itu
ke pengguna akhir seperti intelijen bisnis dari data mart sesuai.
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2025 I Love Translation. All reserved.

E-mail: