retinal disease? To answer this question, we need detailed knowledge o terjemahan - retinal disease? To answer this question, we need detailed knowledge o Bahasa Indonesia Bagaimana mengatakan

retinal disease? To answer this que

retinal disease? To answer this question, we need detailed knowledge of the molecular basis
of retinal light damage in animal models. Toward this goal, good progress has been made in
preventing retinal light damage with antioxidants and neurotrophic factors, but we still do not
know how visual cell damage leads to visual cell death. Thus, although we have gained insights
into the process, the mechanism of light damage still eludes a thorough understanding.
Three light damage hypotheses, originally presented in Noell’s landmark publication (Noell
et al., 1966), have guided much of the work in this area. These include: a toxic photoproduct
arising from vitamin A during exposure to intense light; a metabolic abnormality resulting
from light exposure; and light-induced oxidative reactions. Taken together with a large amount
of additional work, we now know that retinal light damage is a multi-factorial process involving
both environmental and genetic factors. As in other retinal degenerations, these factors may
combine to either predispose or protect photoreceptors from damage and subsequent cell death.
In this chapter, we address several light damage hypotheses as we integrate recent experimental
findings into our understanding of retinal phototoxicity. We begin with a description of the
morphology and biochemical changes found in retina and rod outer segments (ROS) upon
intense light exposure. Next we describe the time course of photoreceptor cell death including
its morphological and biochemical hallmarks. One unique feature of light damage in rats reared
in darkness is widespread destruction of the retinal pigment epithelium (RPE), while animals
reared in dim cyclic light exhibit retinal damage with minor or regionally focused RPE damage
(Noell, 1980). Because of the close anatomical and metabolic relationships between
photoreceptors and RPE, dysfunction in one leads to degeneration in the other. Therefore, we
describe the effects of intense light on RPE cells and the time course of damage in vivo, along
with additional insights from in vitro studies. This is followed by a discussion of the long term
cellular changes that follow intense light exposure, a process known as retinal remodeling.
Central to all hypotheses of retinal light damage is the importance of rhodopsin as the trigger
for photoreceptor cell damage (Noell et al., 1966; Humphries et al., 1997; Grimm et al.,
2000c). Furthermore, the action spectrum for retinal light damage is identical to the rhodopsin
absorption spectrum (Williams and Howell, 1983). Hence, we discuss rhodopsin as a primary
factor in determining the extent of photoreceptor cell loss and examine rhodopsin bleaching
intermediates as potential photosensitizers. Looking at other factors that influence light
damage, we discuss the potential beneficial and detrimental effects of light rearing
environments. This is followed by an examination of potential toxic photoproducts, based on
light’s effects on retinol and its metabolites, and possible protective or destructive metabolites
of docosahexaenoic acid (DHA).
Much has been learned about visual transduction and light-induced photoreceptor cell damage
from studies involving genetically modified animals. We describe some genetic animal models
and the impact of intense light on their retinal degenerations. We also touch on differences in
outcomes and interpretation based on the use of different species. Animal models with cone
cell dominant retinas are less well known and their potential to serve as models for human
retinal disease is underappreciated. Yet, the loss of functional cone photoreceptors can be
devastating. Therefore, we describe a variety of models now available and discuss some of the
problems inherent in attempting to light damage cones.
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
retinal disease? To answer this question, we need detailed knowledge of the molecular basisof retinal light damage in animal models. Toward this goal, good progress has been made inpreventing retinal light damage with antioxidants and neurotrophic factors, but we still do notknow how visual cell damage leads to visual cell death. Thus, although we have gained insightsinto the process, the mechanism of light damage still eludes a thorough understanding.Three light damage hypotheses, originally presented in Noell’s landmark publication (Noellet al., 1966), have guided much of the work in this area. These include: a toxic photoproductarising from vitamin A during exposure to intense light; a metabolic abnormality resultingfrom light exposure; and light-induced oxidative reactions. Taken together with a large amountof additional work, we now know that retinal light damage is a multi-factorial process involvingboth environmental and genetic factors. As in other retinal degenerations, these factors maycombine to either predispose or protect photoreceptors from damage and subsequent cell death.In this chapter, we address several light damage hypotheses as we integrate recent experimentalfindings into our understanding of retinal phototoxicity. We begin with a description of themorphology and biochemical changes found in retina and rod outer segments (ROS) uponintense light exposure. Next we describe the time course of photoreceptor cell death includingits morphological and biochemical hallmarks. One unique feature of light damage in rats rearedin darkness is widespread destruction of the retinal pigment epithelium (RPE), while animalsreared in dim cyclic light exhibit retinal damage with minor or regionally focused RPE damage(Noell, 1980). Because of the close anatomical and metabolic relationships betweenphotoreceptors and RPE, dysfunction in one leads to degeneration in the other. Therefore, wedescribe the effects of intense light on RPE cells and the time course of damage in vivo, alongwith additional insights from in vitro studies. This is followed by a discussion of the long termcellular changes that follow intense light exposure, a process known as retinal remodeling.Central to all hypotheses of retinal light damage is the importance of rhodopsin as the triggerfor photoreceptor cell damage (Noell et al., 1966; Humphries et al., 1997; Grimm et al.,2000c). Furthermore, the action spectrum for retinal light damage is identical to the rhodopsinabsorption spectrum (Williams and Howell, 1983). Hence, we discuss rhodopsin as a primaryfactor in determining the extent of photoreceptor cell loss and examine rhodopsin bleachingintermediates as potential photosensitizers. Looking at other factors that influence lightdamage, we discuss the potential beneficial and detrimental effects of light rearingenvironments. This is followed by an examination of potential toxic photoproducts, based onlight’s effects on retinol and its metabolites, and possible protective or destructive metabolitesof docosahexaenoic acid (DHA).Much has been learned about visual transduction and light-induced photoreceptor cell damagefrom studies involving genetically modified animals. We describe some genetic animal modelsand the impact of intense light on their retinal degenerations. We also touch on differences inoutcomes and interpretation based on the use of different species. Animal models with conecell dominant retinas are less well known and their potential to serve as models for humanretinal disease is underappreciated. Yet, the loss of functional cone photoreceptors can bedevastating. Therefore, we describe a variety of models now available and discuss some of theproblems inherent in attempting to light damage cones.
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
penyakit retina? Untuk menjawab pertanyaan ini, kita membutuhkan pengetahuan rinci tentang dasar molekuler
kerusakan cahaya retina pada hewan model. Untuk mencapai tujuan ini, kemajuan yang baik telah dibuat dalam
mencegah kerusakan ringan retina dengan antioksidan dan faktor neurotropik, tapi kami masih belum
tahu bagaimana visual yang kerusakan sel menyebabkan kematian sel visual. Dengan demikian, meskipun kami telah mendapatkan wawasan
ke dalam proses, mekanisme kerusakan ringan masih menghindar pemahaman yang menyeluruh.
Tiga hipotesis kerusakan ringan, awalnya disajikan dalam publikasi tengara Noell ini (Noell
et al., 1966), telah membimbing banyak pekerjaan dalam hal ini luas area. Ini termasuk: a fotoproduk beracun
yang timbul dari vitamin A selama paparan cahaya yang kuat; kelainan metabolik akibat
dari paparan cahaya; dan cahaya yang disebabkan reaksi oksidatif. Diambil bersama-sama dengan sejumlah besar
pekerjaan tambahan, kita sekarang tahu bahwa kerusakan ringan retina adalah proses multi-faktorial yang melibatkan
kedua faktor lingkungan dan genetik. Seperti dalam degenerasi retina lainnya, faktor-faktor ini dapat
menggabungkan baik mempengaruhi atau melindungi fotoreseptor dari kerusakan dan kematian sel berikutnya.
Dalam bab ini, kita membahas beberapa hipotesis kerusakan ringan seperti kita mengintegrasikan eksperimental baru-baru ini
temuan dalam pemahaman kita tentang fototoksisitas retina. Kita mulai dengan deskripsi
morfologi dan biokimia perubahan yang ditemukan di segmen luar retina dan batang (ROS) pada
paparan cahaya yang kuat. Selanjutnya kita menggambarkan perjalanan waktu kematian sel fotoreseptor termasuk
keunggulan morfologi dan biokimia. Salah satu fitur unik dari kerusakan ringan pada tikus yang dipelihara
dalam kegelapan adalah kehancuran yang luas dari epitel pigmen retina (RPE), sedangkan hewan
dipelihara dalam cahaya redup siklik menunjukkan kerusakan retina dengan ringan atau regional berfokus RPE kerusakan
(Noell, 1980). Karena hubungan anatomis dan metabolik yang erat antara
fotoreseptor dan RPE, disfungsi dalam satu mengarah ke degenerasi yang lain. Oleh karena itu, kita
menggambarkan efek cahaya yang kuat pada sel-sel RPE dan perjalanan waktu kerusakan in vivo, bersama
dengan wawasan tambahan dari penelitian in vitro. Hal ini diikuti dengan diskusi tentang jangka panjang
perubahan seluler yang mengikuti paparan cahaya yang kuat, proses yang dikenal sebagai renovasi retina.
Pusat untuk semua hipotesis kerusakan cahaya retina adalah pentingnya rhodopsin sebagai pemicu
kerusakan sel fotoreseptor (Noell et al. , 1966;. Humphries et al, 1997; Grimm et al,.
2000c). Selain itu, spektrum aksi untuk kerusakan ringan retina identik dengan rhodopsin
spektrum penyerapan (Williams dan Howell, 1983). Oleh karena itu, kita membahas rhodopsin sebagai primer
faktor dalam menentukan besarnya kerugian sel fotoreseptor dan memeriksa rhodopsin pemutihan
intermediet sebagai fotosensitizer potensial. Melihat faktor-faktor lain yang mempengaruhi cahaya
kerusakan, kami membahas potensi efek menguntungkan dan merugikan pemeliharaan ringan
lingkungan. Hal ini diikuti oleh pemeriksaan potensial photoproducts beracun, berdasarkan
efek cahaya pada retinol dan metabolitnya, dan kemungkinan metabolit pelindung atau merusak
asam docosahexaenoic (DHA).
Banyak yang telah belajar tentang transduksi visual dan kerusakan sel fotoreseptor cahaya yang disebabkan
dari studi melibatkan hewan rekayasa genetika. Kami menjelaskan beberapa model hewan genetik
dan dampak cahaya yang kuat pada degenerasi retina mereka. Kami juga menyentuh pada perbedaan
hasil dan interpretasi berdasarkan penggunaan spesies yang berbeda. Model hewan dengan cone
cell retina dominan kurang dikenal dan potensi mereka untuk melayani sebagai model untuk manusia
penyakit retina adalah kurang dihargai. Namun, hilangnya fotoreseptor kerucut fungsional dapat
menghancurkan. Oleh karena itu, kami menjelaskan berbagai model sekarang tersedia dan mendiskusikan beberapa
masalah yang melekat dalam mencoba untuk kerucut kerusakan ringan.
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2024 I Love Translation. All reserved.

E-mail: