Numerous industrial applications have begun to require higher power ap terjemahan - Numerous industrial applications have begun to require higher power ap Bahasa Indonesia Bagaimana mengatakan

Numerous industrial applications ha

Numerous industrial applications have begun to require higher power apparatus inrecent
years. Somemediumvoltage motor drives and utilityapplicationsrequire mediumvoltageand
megawatt power level. For a mediumvoltage grid, it is troublesome to connect only one power
semiconductor switch directly.As a result,a multilevel power converter structure has been
introduced as an alternative in high power and mediumvoltage situations. A multilevel converter
not only achieves high power ratings, but also enables the use of renewable energy sources.
Renewable energy sources such as photovoltaic, wind,and fuel cells canbeeasily interfaced to a
multilevel converter systemfor a high power application [1-3].
The concept ofmultilevel converters hasbeenintroduced since 1975 [4].The term
multilevel began with the three-level converter [5]. Subsequently, several multilevel converter
topologies have been developed [6-13]. However, the elementary concept of a multilevel
converter to achieve higher power is to use a series of power semiconductor switches with
several lower voltage dc sources to performthe power conversion by synthesizing a staircase
voltage waveform. Capacitors, batteries, and renewable energy voltage sources can be used as
the multipledc voltagesources. The commutation ofthe power switches aggregate these
multipledc sourcesin order to achieve high voltage at theoutput; however, the rated voltageof
the power semiconductor switches depends only upon the rating of the dc voltage sources to
which they are connected.
A multilevel converter has several advantages over a conventional two-level converter
that uses high switching frequency pulse width modulation (PWM).The attractive features of a
multilevel converter canbe briefly summarized as follows.
● Staircase waveform quality: Multilevel converters not only can generate the output
voltages with very low distortion, but also can reduce the dv/dtstresses;therefore
electromagnetic compatibility (EMC) problems can be reduced.
● Common-mode (CM)voltage: Multilevel converters produce smaller CM voltage;
therefore,the stress in the bearingsofa motor connected to a multilevel motor drive can be
reduced. Furthermore, CM voltage can be eliminated by using advanced modulation strategies
such as that proposed in [14].
● Input current: Multilevel converters candraw input current with low distortion.
● Switching frequency: Multilevel converters can operateat both fundamental switching
frequency and high switching frequency PWM. It should be noted that lower switching
frequency usually means lower switching loss and higher efficiency.
Unfortunately, multilevel convertersdo have somedisadvantages. One particular
disadvantage is the greater number of powersemiconductor switches needed. Although lower
voltagerated switches can be utilized ina multilevel converter, each switch requires a related
gate drive circuit. This may cause the overall systemto be more expensive and complex.
31-1
Plentiful multilevel converter topologies have been proposed during the last two decades.
Contemporary research has engaged novel converter topologies and unique modulation schemes.
Moreover,three different major multilevel converter structures have been reported in the
literature: cascaded H-bridgesconverter with separate dc sources, diode clamped (neutralclamped), and flying capacitors (capacitor clamped). Moreover, abundant modulation
techniques and control paradigms have beendevelopedfor multilevel converters such as
sinusoidal pulse width modulation (SPWM), selective harmonic elimination (SHE-PWM), space
vector modulation (SVM), and others. In addition,many multilevel converter applications focus
on industrial medium-voltage motor drives [11, 15, 16], utilityinterface for renewable energy
systems [17], flexible ACtransmission system (FACTS) [18], and traction drive systems [19].
This chapter reviews state of the art of multilevel power converter technology.
Fundamental multilevel converter structures and modulation paradigms are discussedincluding
the pros andcons of each technique.Particular concentrationis addressed in modern and more
practical industrial applicationsofmultilevel converters. A procedure for calculating the required
ratings for the active switches, clamping diodes, and dc link capacitors including a design
example are described.Finally, the possible future developments of multilevel converter
technology are noted.
31.2 Multilevel power converter structures
As previously mentioned, three different major multilevel converter structureshave been
applied in industrial applications: cascaded H-bridges converter with separate dc sources, diode
clamped, and flying capacitors. Before continuing discussion in this topic, it should be noted that
the term multilevel converteris utilized to refer to a power electronic circuit that could operate in
an inverteror rectifier mode. The multilevel inverterstructures are thefocus ofin this chapter;
however, the illustrated structures can be implemented for rectifying operation as well.
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
Numerous industrial applications have begun to require higher power apparatus inrecent years. Somemediumvoltage motor drives and utilityapplicationsrequire mediumvoltageandmegawatt power level. For a mediumvoltage grid, it is troublesome to connect only one power semiconductor switch directly.As a result,a multilevel power converter structure has beenintroduced as an alternative in high power and mediumvoltage situations. A multilevel converter not only achieves high power ratings, but also enables the use of renewable energy sources. Renewable energy sources such as photovoltaic, wind,and fuel cells canbeeasily interfaced to a multilevel converter systemfor a high power application [1-3]. The concept ofmultilevel converters hasbeenintroduced since 1975 [4].The termmultilevel began with the three-level converter [5]. Subsequently, several multilevel converter topologies have been developed [6-13]. However, the elementary concept of a multilevel converter to achieve higher power is to use a series of power semiconductor switches with several lower voltage dc sources to performthe power conversion by synthesizing a staircase voltage waveform. Capacitors, batteries, and renewable energy voltage sources can be used as the multipledc voltagesources. The commutation ofthe power switches aggregate these multipledc sourcesin order to achieve high voltage at theoutput; however, the rated voltageofthe power semiconductor switches depends only upon the rating of the dc voltage sources to which they are connected. A multilevel converter has several advantages over a conventional two-level converter that uses high switching frequency pulse width modulation (PWM).The attractive features of a multilevel converter canbe briefly summarized as follows. ● Staircase waveform quality: Multilevel converters not only can generate the output voltages with very low distortion, but also can reduce the dv/dtstresses;thereforeelectromagnetic compatibility (EMC) problems can be reduced. ● Common-mode (CM)voltage: Multilevel converters produce smaller CM voltage; therefore,the stress in the bearingsofa motor connected to a multilevel motor drive can bereduced. Furthermore, CM voltage can be eliminated by using advanced modulation strategies such as that proposed in [14]. ● Input current: Multilevel converters candraw input current with low distortion. ● Switching frequency: Multilevel converters can operateat both fundamental switchingfrequency and high switching frequency PWM. It should be noted that lower switching frequency usually means lower switching loss and higher efficiency. Unfortunately, multilevel convertersdo have somedisadvantages. One particulardisadvantage is the greater number of powersemiconductor switches needed. Although lowervoltagerated switches can be utilized ina multilevel converter, each switch requires a relatedgate drive circuit. This may cause the overall systemto be more expensive and complex. 31-1Plentiful multilevel converter topologies have been proposed during the last two decades.Contemporary research has engaged novel converter topologies and unique modulation schemes. Moreover,three different major multilevel converter structures have been reported in the literature: cascaded H-bridgesconverter with separate dc sources, diode clamped (neutralclamped), and flying capacitors (capacitor clamped). Moreover, abundant modulation techniques and control paradigms have beendevelopedfor multilevel converters such assinusoidal pulse width modulation (SPWM), selective harmonic elimination (SHE-PWM), space vector modulation (SVM), and others. In addition,many multilevel converter applications focuson industrial medium-voltage motor drives [11, 15, 16], utilityinterface for renewable energysystems [17], flexible ACtransmission system (FACTS) [18], and traction drive systems [19]. This chapter reviews state of the art of multilevel power converter technology. Fundamental multilevel converter structures and modulation paradigms are discussedincludingthe pros andcons of each technique.Particular concentrationis addressed in modern and more practical industrial applicationsofmultilevel converters. A procedure for calculating the required ratings for the active switches, clamping diodes, and dc link capacitors including a designexample are described.Finally, the possible future developments of multilevel converter technology are noted. 31.2 Multilevel power converter structures As previously mentioned, three different major multilevel converter structureshave beenapplied in industrial applications: cascaded H-bridges converter with separate dc sources, diode clamped, and flying capacitors. Before continuing discussion in this topic, it should be noted that the term multilevel converteris utilized to refer to a power electronic circuit that could operate in an inverteror rectifier mode. The multilevel inverterstructures are thefocus ofin this chapter;however, the illustrated structures can be implemented for rectifying operation as well.
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
Banyak aplikasi industri telah mulai membutuhkan peralatan daya yang lebih tinggi inrecent
tahun. Drive bermotor Somemediumvoltage dan utilityapplicationsrequire mediumvoltageand
tingkat daya megawatt. Untuk grid mediumvoltage, itu sulit untuk menghubungkan satu kekuatan
semikonduktor saklar directly.As Akibatnya, struktur kekuasaan konverter bertingkat telah
diperkenalkan sebagai alternatif dalam daya tinggi dan situasi mediumvoltage. Sebuah konverter bertingkat
tidak hanya mencapai peringkat daya tinggi, tetapi juga memungkinkan penggunaan sumber energi terbarukan.
Sumber energi terbarukan seperti fotovoltaik, angin, dan sel bahan bakar canbeeasily dihubungkan ke
konverter bertingkat systemfor aplikasi daya tinggi [1-3].
The konverter konsep ofmultilevel hasbeenintroduced sejak tahun 1975 [4] an jangka
bertingkat dimulai dengan konverter tiga tingkat [5]. Selanjutnya, beberapa konverter bertingkat
topologi telah dikembangkan [6-13]. Namun, konsep dasar dari multilevel
converter untuk mencapai kekuatan yang lebih tinggi adalah dengan menggunakan serangkaian switch semikonduktor daya dengan
beberapa sumber tegangan dc rendah untuk performthe konversi daya oleh sintesis tangga
gelombang tegangan. Kapasitor, baterai, dan sumber tegangan energi terbarukan dapat digunakan sebagai
satu voltagesources multipledc. Pergantian tersebut yang switch daya agregat ini
agar sourcesin multipledc untuk mencapai tegangan tinggi di theoutput; Namun, dinilai voltageof
switch listrik semikonduktor hanya bergantung pada rating dari sumber tegangan dc ke
mana mereka terhubung.
Sebuah konverter bertingkat memiliki beberapa keunggulan dibandingkan dua tingkat converter konvensional
yang menggunakan beralih tinggi lebar pulsa frekuensi modulasi (PWM). Fitur menarik dari
konverter bertingkat diperoleh dapat diringkas sebagai berikut.
● Kualitas gelombang Staircase: konverter Multilevel tidak hanya dapat menghasilkan output
tegangan dengan distorsi yang sangat rendah, tetapi juga dapat mengurangi dv / dtstresses, sehingga
kompatibilitas elektromagnetik (EMC) masalah dapat dikurangi.
● Umum-mode (CM) tegangan: konverter Multilevel menghasilkan tegangan CM kecil,
oleh karena itu, stres dalam motor bearingsofa terhubung ke motor multilevel drive dapat
dikurangi. Selain itu, CM tegangan dapat dihilangkan dengan menggunakan strategi modulasi canggih
seperti yang diusulkan dalam [14].
● Masukan saat ini: Multilevel konverter candraw masukan saat ini dengan distorsi yang rendah.
● Frekuensi Switching: konverter Multilevel dapat operateat baik fundamental beralih
frekuensi dan frekuensi switching tinggi PWM. Perlu dicatat bahwa beralih rendah
frekuensi biasanya berarti hilangnya beralih lebih rendah dan efisiensi yang lebih tinggi.
Sayangnya, convertersdo bertingkat memiliki somedisadvantages. Satu tertentu
kelemahan adalah jumlah yang lebih besar dari switch powersemiconductor dibutuhkan. Meskipun lebih rendah
switch voltagerated dapat dimanfaatkan ina konverter bertingkat, setiap switch membutuhkan terkait
sirkuit gerbang drive. Hal ini dapat menyebabkan systemto keseluruhan menjadi lebih mahal dan kompleks.
31-1
berlimpah konverter topologi bertingkat telah diusulkan selama dua dekade terakhir.
penelitian kontemporer memiliki terlibat topologi konverter baru dan skema modulasi yang unik.
Selain itu, tiga struktur konverter bertingkat utama yang berbeda telah dilaporkan dalam
literatur: mengalir H-bridgesconverter dengan sumber dc terpisah, dioda dijepit (neutralclamped), dan kapasitor terbang (kapasitor dijepit). Selain itu, modulasi berlimpah
teknik dan paradigma kontrol memiliki beendevelopedfor konverter bertingkat seperti
sinusoidal modulasi lebar pulsa (SPWM), eliminasi harmonik selektif (SHE-PWM), ruang
modulasi vektor (SVM), dan lain-lain. Selain itu, banyak aplikasi converter bertingkat fokus
pada industri menengah-tegangan drive motor [11, 15, 16], utilityinterface untuk energi terbarukan
sistem [17], sistem yang fleksibel ACtransmission (FAKTA) [18], dan sistem traksi drive [19].
Bab ini menguraikan tentang keadaan seni teknologi konverter daya bertingkat.
Fundamental bertingkat struktur converter dan paradigma modulasi yang discussedincluding
pro andcons setiap concentrationis technique.Particular dibahas dalam modern dan lebih
praktis konverter applicationsofmultilevel industri. Prosedur untuk menghitung diperlukan
peringkat untuk switch aktif, klem dioda, dan kapasitor dc link yang termasuk desain
contoh adalah described.Finally, perkembangan masa depan kemungkinan konverter bertingkat
teknologi dicatat.
31,2 struktur kekuasaan converter Multilevel
Seperti disebutkan sebelumnya, tiga yang berbeda utama structureshave konverter bertingkat telah
diterapkan dalam aplikasi industri: mengalir H-jembatan converter dengan sumber dc terpisah, dioda
dijepit, dan kapasitor terbang. Sebelum melanjutkan diskusi di topik ini, perlu dicatat bahwa
para converteris multilevel istilah yang digunakan untuk merujuk ke sirkuit elektronik listrik yang dapat beroperasi di
mode inverteror rectifier. Para inverterstructures bertingkat yang thefocus ofin bab ini,
namun struktur diilustrasikan dapat diimplementasikan untuk meluruskan operasi juga.
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2024 I Love Translation. All reserved.

E-mail: