The swelling power may be ordered by the treatments’ conditions: HMT 1 terjemahan - The swelling power may be ordered by the treatments’ conditions: HMT 1 Bahasa Indonesia Bagaimana mengatakan

The swelling power may be ordered b

The swelling power may be ordered by the treatments’ conditions: HMT 15% > HMT 20% > HMT 25%. These results are in agreement withOlayinka, Adebowale, and Olu-Owolabi (2008)in a
study of HMT in sorghum starch, and Adebowale and Lawal
(2002) in a study of Bambarra groundnut starch. Hormdok and
Noomhorm (2007)reported that the HMT (20% moisture/92.5C/
30 min) of rice starch (27% amylose) reduced the swelling power
from 14.11 g/g of native starch to 10.29 g/g. Several authors have
observed a reduction in the swelling power of the HMT in potato,
cassava (Gunaratne & Hoover, 2002), rice (Hormdok & Noomhorm,
2007), sorghum (Olayinka et al., 2008) and maize starches (Chung,
Liu, et al., 2009).
The reduction in swelling power following hydrothermal modification has been attributed to internal rearrangement of the
starch granules, which causes further interaction amongst the
starch functional groups (Hoover & Manuel, 1996), making it form
more ordered double helical amylopectin side chain clusters. This
accounts for the increased starch crystallinity (Adebowale & Lawal,
2002).
The highest solubility for all of the starches was obtained at
90C, where most of the granules were gelatinised or swollen
(Fig. 1b, d and f). The HMT of high- and medium-amylose rice
starches (Fig. 1b and d), at temperatures of 60, 70 and 80C presented no significant change in the solubility as compared to their
native starch. However, at 90C, a reduction in the solubility was
observed with an increase in the moisture content. There was a significant reduction in the solubility of the HMT low-amylose starch
as compared to the native starch at 80 and 90C(Fig. 1f). These results are in agreement with Adebowale and Lawal (2002), who
studied the effect of HMT on the solubility of starch at 60, 70, 80
and 90C, and observed a reduction in solubility at all temperatures. However,Hormdok and Noomhorm (2007)found no significant difference in the solubility of the HMT rice starch as
compared with its native form. The decrease in the solubility of
HMT starch indicates that there was a strengthening of the bonds,
with an increase in the interactions amongst amylose and amylopectin molecules, impeding them from leaching out of the
granules.
3.2. Pasting properties
The HMT promoted intense changes in the starches, significantly altering their pasting profile. Table 1shows the pasting
properties of high-, medium- and low-amylose rice starch. The
pasting temperature of rice starch showed a significant increase
(p60.05) with an increase in the moisture content of the hydrothermal treatment (Table 1).
The peak viscosity of the high-amylose starch for the HMT 20%
and HMT 25% was reduced as compared to the native starch. For
medium-amylose starch, the hydrothermal treatment did not affect the peak viscosity. For the low-amylose rice starch, the hydrothermal treatment reduced the peak viscosity for the HMT 15% and
HMT 20% and increased in the HMT 25% (Table 1) in relation to the
native starch.Hormdok and Noomhorm (2007)attributed the
reductioninpeak viscosity of the heat-moisture-treated rice starch
to its restricted swelling capacity.
The high- and medium-amylose starches had their breakdown
reduced by the HMT. The low-amylose starch showed a reduction
in its breakdown value for HMT 15% and HMT 20% starches, and an
increase for HMT 25% starches as compared to the native starch
(p60.05). The reduction of the breakdown caused by HMT shows
that starches are more stable during continued heating and shearing, which is in agreement withAdebowale et al. (2005), Hormdok
and Noomhorm (2007), Olayinka et al. (2008) and Watcharatewinkul, Puttanlek, Rungsardthong, and Uttapap (2009).
The final viscosity for the high-amylose starch showed a significant reduction (p60.05) with an increase in the moisture content
of the hydrothermal treatment as related to the native starch. For
the medium-amylose starch, the reduction of the final viscosity
happened only at HMT 25%. However, for the low-amylose starch,
there was an increase in the final viscosity of HMT 15% and HMT
20% starches.
There was a reduction in the setback for high- and mediumamylose HMT starches with an increase in the moisture content
of the treatment.Lan et al. (2008)have shown that the setback is
influenced by the amount of leached amylose, the granule size
and the presence of rigid non-fragmented swollen granules.Chung,
Liu, et al. (2009)found that HMT reduces the leached amylose in
the starch granules and that this reduction is more significant in
starches with high levels of amylose. This may explain the fact that
hydrothermally treated starches cause an increasing reduction in
the setback in higher amylose content starches because HMT promotes additional interactions between amylose–amylose and/or
amylopectin–amylopectin chains which reduce leached amylose
content and lower the setback.
According toWatcharatewinkul et al. (2009), the HMT (15%,
18%, 20%, 22% and 25% moisture/100C/16 h) of the canna starch
altered pasting profiles, resulting in an increased in the pasting
Table 1
Pasting properties of native and heat-moisture treated rice starches.
Properties
a
Amylose content Native HMT 15% HMT 20% HMT 25%
Pasting temperature (C) High 82.0 ± 0.27
bD
83.8 ± 0.35
bC
85.7 ± 0.35
bB
88.1 ± 0.02
bA
Medium 85.9 ± 0.15
aC
85.5 ± 0.53
aC
87.2 ± 0.20
aB
88.9 ± 0.03
bA
Low 61.4 ± 0.43
cD
62.5 ± 0.18
cC
65.6 ± 0.00
cB
66.9 ± 0.05
aA
Peak viscosity (RVU) High 243.3 ± 2.37
cA
244.3 ± 1.37
bA
228.3 ± 3.00
cB
195.1 ± 0.88
cC
Medium 244.5 ± 0.87
bA
243.0 ± 1.00
bA
243.3 ± 1.34
bA
244.2 ± 3.00
bA
Low 332.8 ± 1.38
aB
320.5 ± 2.83
aC
310.8 ± 1.00
aD
365.8 ± 1.75
aA
Breakdown (RVU) High 23.3 ± 0.92
cA
14.3 ± 0.75
cC
11.9 ± 0.40
cD
17.1 ± 0.75
bB
Medium 61.1 ± 1.69
bA
43.8 ± 0.15
bB
18.1 ± 0.50
bC
15.3 ± 0.68
bD
Low 149.8 ± 1.59
aB
119.3 ± 1.63
aC
120.9 ± 0.38
aC
191.8 ± 1.25
aA
Final viscosity (RVU) High 363.3 ± 1.75
aA
317.3 ± 2.08
bB
280.7 ± 1.34
bC
221.7 ± 1.13
bD
Medium 328.9 ± 1.34
bA
326.1 ± 1.50
aAB
323.5 ± 0.71
aB
298.4 ± 2.59
aC
Low 202.6 ± 0.84
cC
224.6 ± 3.13
cA
213.6 ± 2.05
cB
199.9 ± 0.25
cC
Setback (RVU) High 143.2 ± 2.64
aA
87.3 ± 4.21
bB
64.2 ± 2.07
bC
43.6 ± 0.50
bD
Medium 143.7 ± 1.43
aA
126.9 ± 0.65
aB
98.3 ± 2.54
aC
69.6 ± 1.09
aD
Low 19.6 ± 2.13
bB
23.4 ± 1.91
cAB
23.7 ± 1.41
cAB
26.0 ± 0.25
cA
a
Different lowercase letters in the same column for each property, and different uppercase letters in the same row, differ statistically (p60.05). Results are the means of
three determinations ± the standard deviation. RVU: Rapid Visco Unit.
E. da Rosa Zavareze et al. / Food Chemistry 121 (2010) 358–365 361
temperature and a decrease in the peak viscosity, final viscosity
and breakdown. These authors described that the changes in the
pasting properties of the heat-moisture treated starches is due to
the associations amongst the chains in the amorphous region of
the granule and the changes in crystallinity during hydrothermal
treatment
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
Kekuatan pembengkakan dapat dipesan oleh perawatan yang kondisi: HMT 15% > HMT 20% > HMT 25%. Hasil ini di dalam Perjanjian withOlayinka, Adebowale dan Olu-mengatakan (2008)Studi HMT tepung sorgum, Adebowale dan dariEddie(2002) dalam sebuah studi dari Pati kacang tanah Bambarra. Hormdok danNoomhorm (2007) melaporkan bahwa HMT (20% kelembaban/92,5 C /30 min) beras Pati (27% amilosa) mengurangi pembengkakan kekuatandari 14.11 g/g asli Pati ke 10,29 g/g. Beberapa penulis memilikimengamati penurunan pembengkakan kekuatan HMT dalam kentang,singkong (Gunaratne & Hoover, 2002), padi (Hormdok & Noomhorm,2007), sorgum (Olayinka et al., 2008) dan jagung Pati (Chung,Liu, et al., 2009).Penurunan pembengkakan kekuatan modifikasi hydrothermal berikut telah dikaitkan dengan penataan ulang internalPati butiran, yang menyebabkan lebih lanjut interaksi antaraPati kelompok fungsional (Hoover & Manuel, 1996), sehingga bentuklebih memerintahkan amilopektin heliks ganda sisi jaringan cluster. Iniaccount untuk bagian kristalinitas peningkatan Pati (Adebowale & dariEddie,2002).Kelarutan tertinggi untuk semua Pati diperoleh pada90 C, dimana sebagian besar butiran gelatinised atau bengkak(Gambar 1b, d dan f). HMT beras tinggi dan menengah amilosaPati (gambar 1b dan d), pada suhu 60, 70 dan 80 C disajikan ada perubahan signifikan dalam kelarutan dibandingkan dengan merekaPati asli. Namun, pada 90 C, pengurangan kelarutan adalahdiamati dengan peningkatan kadar. Ada penurunan yang signifikan dalam kelarutan Pati rendah-amilosa HMTdibandingkan dengan pati asli di 80 dan 90 C (Fig. 1f). Hasil ini adalah sesuai dengan Adebowale dan dariEddie (2002), yangmempelajari efek dari HMT pada kelarutan Pati di 60, 70, 80dan 90 C, dan diamati pengurangan dalam kelarutan pada semua temperatur. Namun, Hormdok dan Noomhorm (2007) menemukan ada perbedaan yang signifikan dalam kelarutan Pati beras HMT sebagaidibandingkan dengan bentuk yang asli. Penurunan kelarutanPati HMT menunjukkan bahwa ada memperkuat ikatan,dengan peningkatan interaksi antara molekul amilosa dan amilopektin, menghambat mereka dari pencucian daributiran.3.2. paste propertiHMT dipromosikan intens perubahan dalam Pati, secara signifikan mengubah profil paste mereka. Meja 1shows pastesifat tinggi, menengah dan rendah-amilosa beras tepung. Themenyisipkan suhu Pati beras menunjukkan peningkatan yang signifikan(p60.05) dengan peningkatan kadar terapi hydrothermal (Tabel 1).Viskositas puncak pati tinggi-amilosa untuk HMT 20%dan HMT 25% berkurang dibandingkan dengan pati asli. UntukMedia-amilosa Pati, pengobatan hydrothermal tidak mempengaruhi viskositas puncak. Untuk rendah-amilosa beras Pati, pengobatan hydrothermal berkurang viskositas puncak HMT 15% danHMT 20% and increased in the HMT 25% (Table 1) in relation to thenative starch.Hormdok and Noomhorm (2007)attributed thereductioninpeak viscosity of the heat-moisture-treated rice starchto its restricted swelling capacity.The high- and medium-amylose starches had their breakdownreduced by the HMT. The low-amylose starch showed a reductionin its breakdown value for HMT 15% and HMT 20% starches, and anincrease for HMT 25% starches as compared to the native starch(p60.05). The reduction of the breakdown caused by HMT showsthat starches are more stable during continued heating and shearing, which is in agreement withAdebowale et al. (2005), Hormdokand Noomhorm (2007), Olayinka et al. (2008) and Watcharatewinkul, Puttanlek, Rungsardthong, and Uttapap (2009).The final viscosity for the high-amylose starch showed a significant reduction (p60.05) with an increase in the moisture contentof the hydrothermal treatment as related to the native starch. Forthe medium-amylose starch, the reduction of the final viscosityhappened only at HMT 25%. However, for the low-amylose starch,there was an increase in the final viscosity of HMT 15% and HMT20% starches.There was a reduction in the setback for high- and mediumamylose HMT starches with an increase in the moisture contentof the treatment.Lan et al. (2008)have shown that the setback isinfluenced by the amount of leached amylose, the granule sizeand the presence of rigid non-fragmented swollen granules.Chung,Liu, et al. (2009)found that HMT reduces the leached amylose inthe starch granules and that this reduction is more significant instarches with high levels of amylose. This may explain the fact thathydrothermally treated starches cause an increasing reduction inthe setback in higher amylose content starches because HMT promotes additional interactions between amylose–amylose and/oramylopectin–amylopectin chains which reduce leached amylosecontent and lower the setback.According toWatcharatewinkul et al. (2009), the HMT (15%,18%, 20%, 22% and 25% moisture/100C/16 h) of the canna starchaltered pasting profiles, resulting in an increased in the pastingTable 1Pasting properties of native and heat-moisture treated rice starches.PropertiesaAmylose content Native HMT 15% HMT 20% HMT 25%Pasting temperature (C) High 82.0 ± 0.27bD83.8 ± 0.35bC85.7 ± 0.35bB88.1 ± 0.02bAMedium 85.9 ± 0.15aC85.5 ± 0.53aC87.2 ± 0.20aB88.9 ± 0.03bALow 61.4 ± 0.43cD62.5 ± 0.18cC65.6 ± 0.00cB66.9 ± 0.05aAPeak viscosity (RVU) High 243.3 ± 2.37cA244.3 ± 1.37bA228.3 ± 3.00cB195.1 ± 0.88cCMedium 244.5 ± 0.87bA243.0 ± 1.00bA243.3 ± 1.34bA244.2 ± 3.00bALow 332.8 ± 1.38aB320.5 ± 2.83aC310.8 ± 1.00aD365.8 ± 1.75aABreakdown (RVU) High 23.3 ± 0.92cA14.3 ± 0.75cC11.9 ± 0.40cD17.1 ± 0.75bBMedium 61.1 ± 1.69bA43.8 ± 0.15bB18.1 ± 0.50bC15.3 ± 0.68bDLow 149.8 ± 1.59aB119.3 ± 1.63aC120.9 ± 0.38aC191.8 ± 1.25aAFinal viscosity (RVU) High 363.3 ± 1.75aA317.3 ± 2.08bB280.7 ± 1.34bC221.7 ± 1.13bDMedium 328.9 ± 1.34bA326.1 ± 1.50aAB323.5 ± 0.71aB298.4 ± 2.59aCLow 202.6 ± 0.84cC224.6 ± 3.13cA213.6 ± 2.05cB199.9 ± 0.25cCSetback (RVU) High 143.2 ± 2.64aA87.3 ± 4.21bB64.2 ± 2.07bC43.6 ± 0.50bDMedium 143.7 ± 1.43aA126.9 ± 0.65aB98.3 ± 2.54aC69.6 ± 1.09aDLow 19.6 ± 2.13bB23.4 ± 1.91cAB23.7 ± 1.41cAB26.0 ± 0.25cAaDifferent lowercase letters in the same column for each property, and different uppercase letters in the same row, differ statistically (p60.05). Results are the means ofthree determinations ± the standard deviation. RVU: Rapid Visco Unit.E. da Rosa Zavareze et al. / Food Chemistry 121 (2010) 358–365 361temperature and a decrease in the peak viscosity, final viscosityand breakdown. These authors described that the changes in thepasting properties of the heat-moisture treated starches is due tothe associations amongst the chains in the amorphous region ofthe granule and the changes in crystallinity during hydrothermaltreatment
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
Kekuatan pembengkakan dapat dipesan oleh kondisi perawatan ': HMT 15%> HMT 20%> HMT 25%. Hasil ini dalam perjanjian withOlayinka, Adebowale, dan Olu-Owolabi (2008) dalam
studi HMT dalam pati sorghum, dan Adebowale dan Lawal
(2002) dalam studi Bambarra pati kacang tanah. Hormdok dan
Noomhorm (2007) melaporkan bahwa HMT (20% kelembaban / 92,5? C /
30 menit) dari pati beras (27% amilosa) mengurangi daya pembengkakan
dari 14,11 g / g pati asli 10.29 g / g. Beberapa penulis telah
mengamati pengurangan pada kekuatan pembengkakan HMT dalam kentang,
singkong (Gunaratne & Hoover, 2002), beras (Hormdok & Noomhorm,
2007), sorgum (Olayinka et al., 2008) dan jagung pati (Chung,
Liu , et al., 2009).
Penurunan pembengkakan daya berikut modifikasi hidrotermal telah dikaitkan dengan penataan ulang internal
granula pati, yang menyebabkan interaksi lebih lanjut antara
kelompok fungsional pati (Hoover & Manuel, 1996), sehingga membentuk
lebih teratur ganda amilopektin heliks cluster rantai samping. Ini
menyumbang peningkatan kristalinitas pati (Adebowale & Lawal,
2002).
Kelarutan tertinggi untuk semua pati diperoleh pada
90? C, di mana sebagian besar butiran yang gelatinised atau bengkak
(Gbr. 1b, d dan f). HMT beras tinggi dan menengah-amilosa
pati (Gbr. 1b dan d), pada suhu 60, 70 dan 80? C disajikan tidak ada perubahan signifikan dalam kelarutan dibandingkan dengan mereka
pati asli. Namun, pada 90? C, penurunan kelarutan itu
diamati dengan peningkatan kadar air. Ada penurunan yang signifikan dalam kelarutan HMT pati rendah amilosa
dibandingkan dengan pati asli pada 80 dan 90? C (Gbr. 1f). Hasil ini sesuai dengan Adebowale dan Lawal (2002), yang
meneliti efek dari HMT pada kelarutan pati pada 60, 70, 80
dan 90? C, dan mengamati penurunan kelarutan pada semua suhu. Namun, Hormdok dan Noomhorm (2007) tidak menemukan perbedaan yang signifikan dalam kelarutan pati beras HMT sebagai
dibandingkan dengan bentuk aslinya. Penurunan kelarutan
HMT pati menunjukkan bahwa ada penguatan obligasi,
dengan peningkatan interaksi antara amilosa dan amilopektin molekul, menghambat mereka dari pencucian keluar dari
butiran.
3.2. Sifat paste
The HMT dipromosikan perubahan intens di pati, secara signifikan mengubah profil menyisipkan mereka. Tabel 1shows yang menyisipkan
sifat tinggi, menengah dan rendah amilosa pati beras. The
Suhu paste pati beras menunjukkan peningkatan yang signifikan
(p60.05) dengan peningkatan kadar air dari perlakuan hidrotermal (Tabel 1).
Puncak viskositas pati tinggi amilosa untuk HMT 20%
dan HMT 25% adalah berkurang dibandingkan dengan pati asli. Untuk
pati menengah-amilosa, pengobatan hidrotermal tidak mempengaruhi viskositas puncak. Untuk pati beras rendah amilosa, perlakuan hidrotermal mengurangi viskositas puncak untuk HMT 15% dan
HMT 20% dan meningkat di HMT 25% (Tabel 1) dalam kaitannya dengan
starch.Hormdok asli dan Noomhorm (2007) disebabkan
reductioninpeak viskositas pati beras panas-kelembaban diperlakukan
kapasitas pembengkakan yang dibatasi.
Para tinggi dan menengah-amilosa pati memiliki rincian mereka
dikurangi oleh HMT. Pati rendah amilosa menunjukkan penurunan
nilai kerusakan untuk HMT 15% dan HMT 20% pati, dan
peningkatan untuk HMT 25% pati dibandingkan dengan pati asli
(p60.05). Pengurangan kerusakan yang disebabkan oleh HMT menunjukkan
bahwa pati lebih stabil selama terus pemanasan dan geser, yang dalam perjanjian withAdebowale et al. (2005), Hormdok
dan Noomhorm (2007), Olayinka et al. (2008) dan Watcharatewinkul, Puttanlek, Rungsardthong, dan Uttapap (2009).
Viskositas akhir untuk pati tinggi amilosa menunjukkan penurunan yang signifikan (p60.05) dengan peningkatan kadar air
dari perlakuan hidrotermal yang terkait dengan asli pati. Untuk
pati menengah-amilosa, pengurangan viskositas akhir
terjadi hanya pada HMT 25%. Namun, untuk pati rendah amilosa,
terjadi peningkatan dalam viskositas akhir HMT 15% dan HMT
20% pati.
Ada penurunan kemunduran bagi tinggi dan mediumamylose HMT pati dengan peningkatan kadar air
dari treatment.Lan et al. (2008) telah menunjukkan bahwa kemunduran tersebut
dipengaruhi oleh jumlah amilosa pencucian, ukuran granul
dan adanya kaku non-terfragmentasi bengkak granules.Chung,
Liu, et al. (2009) menemukan bahwa HMT mengurangi amilosa pencucian di
dalam granula pati dan bahwa pengurangan ini lebih signifikan dalam
pati dengan tingkat tinggi amilosa. Hal ini mungkin menjelaskan fakta bahwa
pati hidrotermal diobati menyebabkan pengurangan peningkatan
kemunduran dalam pati kadar amilosa lebih tinggi karena HMT mempromosikan interaksi tambahan antara amilosa-amilosa dan / atau
rantai yang mengurangi amilosa amilopektin tercuci-amilopektin
konten dan menurunkan kemunduran.
Menurut toWatcharatewinkul et al. (2009), HMT (15%,
18%, 20%, 22% dan 25% kelembaban / 100? C / 16 h) dari pati ganyong
profil paste diubah, mengakibatkan peningkatan dalam menyisipkan
Tabel 1
Paste sifat pati asli dan panas kelembaban diperlakukan beras.
Properti
yang
konten asli HMT 15% HMT 20% HMT 25% Amilosa
suhu Paste (? C) Tinggi 82.0 ± 0.27
bD
83,8 ± 0,35
bc
85,7 ± 0,35
bB
88.1 ± 0,02
bA
Medium 85,9 ± 0,15
aC
85.5 ± 0.53
aC
87,2 ± 0,20
aB
88,9 ± 0,03
bA
Rendah 61,4 ± 0.43
CD
62,5 ± 0,18
cC
65,6 ± 0.00
CB
66,9 ± 0,05
aA
Puncak viskositas (RVU) Tinggi 243,3 ± 2.37
cA
244,3 ± 1.37
bA
228,3 ± 3.00
CB
195,1 ± 0.88
cC
Medium 244,5 ± 0.87
bA
243,0 ± 1.00
bA
243,3 ± 1,34
bA
244,2 ± 3.00
bA
Rendah 332,8 ± 1,38
aB
320,5 ± 2.83
aC
310,8 ± 1.00
aD
365,8 ± 1,75
aA
Breakdown (RVU) Tinggi 23,3 ± 0.92
cA
14,3 ± 0,75
cC
11.9 ± 0.40
CD
17.1 ± 0.75
bB
Medium 61,1 ± 1,69
bA
43,8 ± 0,15
bB
18.1 ± 0.50
bc
15,3 ± 0.68
bD
Rendah 149,8 ± 1.59
aB
119,3 ± 1.63
aC
120.9 ± 0.38
aC
191,8 ± 1,25
aA
viskositas Akhir (RVU) Tinggi 363,3 ± 1,75
aA
317,3 ± 2.08
bB
280,7 ± 1,34
bc
221,7 ± ​​1,13
bD
Medium 328,9 ± 1,34
bA
326,1 ± 1.50
AAB
323,5 ± 0.71
aB
298,4 ± 2.59
aC
Low 202,6 ± 0,84
cC
224,6 ± 3.13
cA
213,6 ± 2.05
CB
199,9 ± 0,25
cC
Kemunduran (RVU ) Tinggi 143,2 ± 2.64
aA
87,3 ± 4.21
bB
64,2 ± 2.07
bc
43.6 ± 0.50
bD
Medium 143,7 ± 1,43
aA
126,9 ± 0,65
aB
98,3 ± 2.54
aC
69,6 ± 1.09
aD
Rendah 19,6 ± 2.13
bB
23,4 ± 1.91
CAB
23,7 ± 1.41
CAB
26,0 ± 0.25
cA
a
huruf kecil berbeda pada kolom yang sama untuk masing-masing properti, dan huruf besar berbeda pada baris yang sama, berbeda secara statistik (p60.05). Hasil merupakan sarana
tiga penentuan ± standar deviasi. RVU:. Cepat Visco Satuan
E. da Rosa Zavareze dkk. / Food Chemistry 121 (2010) 358-365 361
suhu dan penurunan viskositas puncak, viskositas akhir
dan kerusakan. Para penulis ini dijelaskan bahwa perubahan
sifat paste dari pati panas kelembaban diperlakukan karena
asosiasi antara rantai di wilayah amorf
granul dan perubahan kristalinitas selama hidrotermal
pengobatan
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2024 I Love Translation. All reserved.

E-mail: