1. IntroductionStarch is a major constituent of rice and an important  terjemahan - 1. IntroductionStarch is a major constituent of rice and an important  Bahasa Indonesia Bagaimana mengatakan

1. IntroductionStarch is a major co

1. Introduction
Starch is a major constituent of rice and an important structural
constituent in many rice products (Sasaki et al., 2009). Rice starch
is not as widely used as starches derived from other sources due to
the high value of milled rice as food. The small size of rice starch
granules and the wide range of amylose content of rice varieties
provide opportunities for the development of a rice starch market
(Zhong et al., 2009). Rice starch is used as an additive in various
foods, industrial products, desserts, bakery products and as a fat
mimetic in foods such as ice cream, yoghurt and salad dressings
(Puchongkavarin, Varavinit, & Bergthaller, 2005).
Rice starch is composed of amylose and amylopectin. The ratio
of amylose to amylopectin and the branching properties of the
amylopectin molecules of a rice starch can affect the physical, textural and pasting properties of rice during the cooking of rice and
rice starch (Champagne, 1996).
The starch, in its native form, has limited use in the industry.
Physical and chemical modifications are commonly used to produce starches with special properties. Although chemically modified starches are available for industrial purposes, most
industries (especially the food and pharmaceutical industries) prefer starches that have not been chemically altered. Therefore, physically modified starch, by use of moisture, heat, shear, or radiation
has gained a wider acceptance, because there is no waste of
chemical reagents in the modified starch (Adebowale, Afolabi, &
Olu-Owolabi, 2005). Hydrothermal treatments (heat-moisture
treatment, HMT; and annealing, ANN) are physical modifications
that change the physicochemical properties of starch, without
destroying its granule structure. Both annealing and heat-moisture
treatments are related processes in which the starch to moisture
ratio, the temperature and heating time are critical parameters
that need to be controlled (Chung, Liu, & Hoover, 2009). The differences between these two treatments are the amount of water and
temperature used. Annealing occurs under a large excess of water
(50–60%) and occurs at relatively low temperatures (below the
gelatinisation temperature), whilst the HMT is carried out under
restricted moisture content (10–30%) and higher temperatures
(90–120C) (Maache-Rezzoug, Zarguili, Loisel, Queveau, & Buléon,
2008).
Regardless of origin of the starch, heat-moisture treatment promotes the increase of the gelatinisation transition temperatures,
the widening of the gelatinisation temperature range, a decrease
in the granular swelling and amylose leaching and an increase in
thermal stability. However, depending on the botanical origin
and treatment conditions, changes to the X-ray pattern, the formation of amylose–lipid complexes, the disruption of crystallinity, an
increase or decrease in enzyme susceptibility has been shown to
occur with HMT (Chung, Hoover, & Liu, 2009).
Different food products make different demands on the starches
to use in their formulations, depending on the desired properties of
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
1. Introduction
Starch is a major constituent of rice and an important structural
constituent in many rice products (Sasaki et al., 2009). Rice starch
is not as widely used as starches derived from other sources due to
the high value of milled rice as food. The small size of rice starch
granules and the wide range of amylose content of rice varieties
provide opportunities for the development of a rice starch market
(Zhong et al., 2009). Rice starch is used as an additive in various
foods, industrial products, desserts, bakery products and as a fat
mimetic in foods such as ice cream, yoghurt and salad dressings
(Puchongkavarin, Varavinit, & Bergthaller, 2005).
Rice starch is composed of amylose and amylopectin. The ratio
of amylose to amylopectin and the branching properties of the
amylopectin molecules of a rice starch can affect the physical, textural and pasting properties of rice during the cooking of rice and
rice starch (Champagne, 1996).
The starch, in its native form, has limited use in the industry.
Physical and chemical modifications are commonly used to produce starches with special properties. Although chemically modified starches are available for industrial purposes, most
industries (especially the food and pharmaceutical industries) prefer starches that have not been chemically altered. Therefore, physically modified starch, by use of moisture, heat, shear, or radiation
has gained a wider acceptance, because there is no waste of
chemical reagents in the modified starch (Adebowale, Afolabi, &
Olu-Owolabi, 2005). Hydrothermal treatments (heat-moisture
treatment, HMT; and annealing, ANN) are physical modifications
that change the physicochemical properties of starch, without
destroying its granule structure. Both annealing and heat-moisture
treatments are related processes in which the starch to moisture
ratio, the temperature and heating time are critical parameters
that need to be controlled (Chung, Liu, & Hoover, 2009). The differences between these two treatments are the amount of water and
temperature used. Annealing occurs under a large excess of water
(50–60%) and occurs at relatively low temperatures (below the
gelatinisation temperature), whilst the HMT is carried out under
restricted moisture content (10–30%) and higher temperatures
(90–120C) (Maache-Rezzoug, Zarguili, Loisel, Queveau, & Buléon,
2008).
Regardless of origin of the starch, heat-moisture treatment promotes the increase of the gelatinisation transition temperatures,
the widening of the gelatinisation temperature range, a decrease
in the granular swelling and amylose leaching and an increase in
thermal stability. However, depending on the botanical origin
and treatment conditions, changes to the X-ray pattern, the formation of amylose–lipid complexes, the disruption of crystallinity, an
increase or decrease in enzyme susceptibility has been shown to
occur with HMT (Chung, Hoover, & Liu, 2009).
Different food products make different demands on the starches
to use in their formulations, depending on the desired properties of
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
1. Pendahuluan
Pati merupakan konstituen utama padi dan struktural penting
konstituen dalam banyak produk beras (Sasaki et al., 2009). Pati beras
tidak seperti yang banyak digunakan sebagai pati yang berasal dari sumber lain karena
tingginya nilai beras giling sebagai makanan. Ukuran kecil dari pati beras
butiran dan berbagai kandungan amilosa varietas padi
memberikan kesempatan untuk pengembangan pasar pati beras
(Zhong et al., 2009). Pati beras tersebut digunakan sebagai aditif dalam berbagai
makanan, produk industri, makanan penutup, produk roti dan sebagai lemak
mimesis dalam makanan seperti es krim, yoghurt dan salad dressing
(Puchongkavarin, Varavinit, & Bergthaller, 2005).
Beras pati terdiri dari amilosa dan amilopektin. Rasio
amilosa untuk amilopektin dan sifat percabangan dari
molekul amilopektin dari pati beras dapat mempengaruhi sifat fisik, tekstur dan paste beras saat memasak beras dan
tepung beras (Champagne, 1996).
pati, dalam bentuk aslinya , telah membatasi digunakan dalam industri.
Fisik dan modifikasi kimia yang umum digunakan untuk menghasilkan pati dengan sifat khusus. Meskipun pati yang dimodifikasi secara kimia tersedia untuk keperluan industri, sebagian besar
industri (terutama makanan dan farmasi industri) lebih memilih pati yang belum diubah secara kimia. Oleh karena itu, secara fisik dimodifikasi pati, dengan menggunakan uap air, panas, geser, atau radiasi
telah memperoleh penerimaan yang lebih luas, karena tidak ada pemborosan
reagen kimia dalam pati diubah (Adebowale, Afolabi, &
Olu-Owolabi, 2005). Perawatan hidrotermal (panas-kelembaban
pengobatan, HMT, dan anil, ANN) adalah modifikasi fisik
yang mengubah sifat fisikokimia pati, tanpa
merusak struktur granul nya. Kedua anil dan panas-kelembaban
perawatan proses yang terkait di mana pati kelembaban
rasio, suhu dan waktu pemanasan adalah parameter penting
yang perlu dikontrol (Chung, Liu, & Hoover, 2009). Perbedaan antara dua perlakuan ini adalah jumlah air dan
suhu yang digunakan. Anil terjadi di bawah berlebih besar air
(50-60%) dan terjadi pada suhu relatif rendah (di bawah
suhu gelatinisation), sementara HMT yang dilakukan di bawah
Pembatasan isi kelembaban (10-30%) dan suhu yang lebih tinggi
(90-120 ? C) (Maache-Rezzoug, Zarguili, Loisel, Queveau, & Buleon,
2008).
Terlepas dari asal pati, perlakuan panas-kelembaban mempromosikan peningkatan suhu gelatinisation transisi,
pelebaran kisaran suhu gelatinisation, penurunan
dalam pembengkakan granular dan pencucian amilosa dan peningkatan
stabilitas termal. Namun, tergantung pada asal botani
dan pengobatan kondisi, perubahan pola X-ray, pembentukan kompleks amilosa-lipid, gangguan kristalinitas, sebuah
kenaikan atau penurunan kerentanan enzim telah terbukti
terjadi dengan HMT (Chung, Hoover , & Liu, 2009).
produk makanan yang berbeda membuat tuntutan yang berbeda pada pati
untuk digunakan dalam formulasi mereka, tergantung pada sifat yang diinginkan dari
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2024 I Love Translation. All reserved.

E-mail: