This species has a retina containing60% cones (Table 1) and has a yell terjemahan - This species has a retina containing60% cones (Table 1) and has a yell Bahasa Indonesia Bagaimana mengatakan

This species has a retina containin

This species has a retina containing
60% cones (Table 1) and has a yellow lens. Only in aphakic animals treated with near-UV
wavelength light (366 nm) was photoreceptor light damage achieved. Most recently, David
Hicks and associates, at the Cellular and Integrative Neurosciences Institut (CNRS) in
Strasbourg, France, have conducted light damage studies on the Nile grass rat. This rodent has
33% cones distributed evenly across its retina (Table 1), making it technically rod-dominant,
but it is a diurnal species. Its lens lacks the yellow pigment found in squirrels. Eight hours of
15,000 lux white light in unrestrained animals, or 2 hours of 20,000 lux white light in an
anesthetized dilated animal, produced no substantial evidence of light damage; moreover, time
of day had no effect. These animals had been reared in cyclic light of a standard rodent colony,
including 2 weeks of dim cyclic light (20 lux) and 12 hours in complete darkness prior to
intense light exposure. As in the gray squirrel, short wavelength light (410 nm) was required
to achieve photoreceptor degeneration in the Nile grass rat, but this also resulted in global
retinal destruction quite distinct from the progression of light damage described for roddominant
rodent models (Boudard and Hicks, manuscript in preparation).
4.2.1 Primates and Light Damage—Diurnal vs. nocturnal differences in light damage
susceptibility are not unique to rodents; such a distinction is also found in primates.
Photoreceptor damage from intense visible light has been studied in the nocturnal owl monkey
(Fullmer et al., 1978) and in diurnal macaques (Sykes et al., 1978; Tso, 1987). Both are roddominant,
as are primates typically, although the owl monkey is relatively rod-enriched (Finlay
et al., 2008). Both possess a fovea, but only in macaques is there a pure-cone foveola: in the
owl monkey fovea, rods still outnumber cones by 14 to 1 (Wikler and Rakic, 1990). Macaques
possess M- and S-cones but functional S-cones are absent from the owl monkey retina (Jacobs
et al., 1996). Similar white light exposure (ca. 0.2 W/cm2 for 30 minutes) was catastrophic in
the nocturnal owl monkey retina (Fuller et al., 1978), but caused negligible photoreceptor
damage in the diurnal macaque retina (Tso, 1987). Earlier, Sykes et al. (1981) also studied
white light damage in macaque retina, but used longer exposures (12 hr) at an intensity far
lower (0.2–0.8 mW/cm2) than that used by Tso (1987). Sykes et al. (1981) were able to
distinguish the threshold intensities required for detectable light damage in rods vs. cones,
limited to outer segment disruption. Significantly, cone OS exhibited a lower threshold than
ROS, opposite what is found in nocturnal rodents and raising questions about the rod-to-cone
bystander effect hypothesis with regard to the diurnal primate retina. At intensities high enough
to damage both ROS and COS, these authors also found that COS damage occurred at the base
whereas ROS damage occurred at the distal tip. The significance of this observation is unclear.
A consistent finding in both rodents and primates is the vulnerability difference between diurnal
and nocturnal retinas. The relative resistance of diurnal retinas is likely due to multiple factors
that may either operate less robustly in nocturnal retinas, or may be absent from them altogether.
An elegant comparative study suggests one feature that could contribute resistance to the rods
of diurnal retinas, including the rod-dominant retinas of diurnal primates. Solovei and
colleagues (2009) have reported a division in the architecture of rod nuclear chromatin between
nocturnal and diurnal mammals. With a computer model, they suggest that rod nuclei in
nocturnal species function as collecting lenses, helping to increase photon capture per rod cell
compared to that of the rods of diurnal species. Thus, the ROS of nocturnal animals may simply
collect more light energy from incident radiation. By having a lower quantum catch, diurnal
rods would be less vulnerable to damage and less able to exert a bystander effect on cones,
whereas the capture of photons in nocturnal rods would enhance the likelihood of rod and cone
damage.
Comparative studies also show that some diurnal retinas are more resistant to light damage
than others. Use of very intense monochromatic light exposure on the macaque retina results
in partially selective ablation of cone types: blue light irreversibly damages S-cones; green
light damages M-cones, which recover about a week later; and red light has no effect (Sperling
1986). Gerald Jacobs and associates at the University of California Santa Barbara used this
same approach in the 1970s with California ground squirrel, a strictly diurnal rodent with 85%
cones in its retina and a pure-cone central region (Table 1). Even a full day’s exposure to intense
monochromatic light failed to produce any cone cell damage in the eyes of anesthetized ground
squirrels with dilated pupils (Gerald H. Jacobs, personal communication). These wild-caught
animals were reared in ambient southern California conditions, and then when captured
maintained under standard cyclic animal room lighting. While it’s tempting to speculate that
cone dominance is responsible for the ground squirrel’s resistance, crucially the rod-dominant
Nile grass rat appears equally resistant. There are undoubtedly other yet-to-be-discovered
protective factors at play in the diurnal rodent retina. 5. Protection Against Retinal Light Damage
5.1 Antioxidants and Ocular Drug Delivery
Natural and synthetic antioxidants prevent retinal light damage and photoreceptor cell loss.
This includes the natural L-stereoisomer of ascorbic acid (Organisciak et al., 1985; Li et al.,
1985) as well as its D-stereoisomer, which is an antioxidant but not a cofactor for enzymemediated
hydroxylation (Organisciak et al., 1989b; ibid 1992). The L-stereoisomer of Nacetyl-
cysteine (Tanito et al., 2002; Busch et al., 1999) and N-nitro-arginine methyl ester
(Goureau et al., 1993; Donovan et al., 2001; Kaldi et al., 2003) also effectively reduce light
damage, but their D-stereoisomers are ineffective. Natural substances such as ginkgo biloba
extract (Ranchon et al., 1999) probably function directly as antioxidants during light exposure,
while others, including saffron (Maccarone et al., 2008) and sulforaphane (Tanito et al.,
2005a) induce the synthesis of antioxidative enzymes. Synthetic antioxidants that have also
proven effective include WR-77913, a radioprotective dye that quenches singlet oxygen (Remé
et al., 1991); the free radical spin trap phenyl-N-tert-butylnitrone (PBN) (Ranchon et al.,
2001; Tomita et al., 2005, Tanito et al., 2005b); OT-551, a TEMPOL derivative that catalyzes
the degradation of superoxide (Tanito et al., 2007b); and dimethylthiourea (DMTU), a
quencher of H2O2 and hydroxyl radicals (Lam et al., 1989; Organisciak et al., 1992; Ranchon
et al., 1999; Vaughan et al., 2006). Based on the specificities of antioxidants for different forms
of reactive oxygen, it is tempting to implicate particular oxygen radicals in the mechanism of
light damage. However, no antioxidant exhibits complete fidelity with a single species of
reactive oxygen, making that primarily speculation. Another problem with inferring
mechanism is the lack of evidence, in all cases, that an antioxidant actually passed the bloodretinal
barrier and was taken up by the tissue. Finally, several different forms of reactive oxygen
are probably involved in the damage process, albeit at different times. As an example,
macrophages invade damaged tissues and release several different types of reactive oxygen,
but their appearance in retina during light damage is relatively late. Still, the effectiveness of
a large number of antioxidants is compelling evidence that oxidative stress is an integral part
of the light damage process.
Oxidative stress also appears to be an early event in the retinal light damage process. Demontis
et al. (2002) detected an increase in light-induced oxidation in isolated rod cells within minutes
of light onset. Changes in fluorescence detectable oxidation in the inner and outer segments
were attributed to retinaldehyde photoisomerization and mitochondrial metabolism,
respectively. In cultured rod cells, Yang et al. (2003) found changes in fluorescence in the
mitochondria-rich inner segment ellipsoids, which were induced by blue light and quenched
by antioxidants. The rapid appearance of oxidative stress in isolated photoreceptors does not
appear to be an in vitro artifact. Retinal ganglion cells in culture also exhibit mitochondrial
mediated oxidation and cellular apoptosis, but this requires 2–3 days of intense light (Osborne
et al., 2008). In photoreceptor cell inner segments, superoxide dismutase (SOD) and catalase
normally reduce the effects of superoxide and H2O2 generated by mitochondrial metabolism
(Rao et al., 1985; Atalla et al., 1987). Mittag et al. (1999) found that transgenic mice with a
mutated cytoplasmic form of SOD incurred greater retinal light damage than did non-transgenic
animals with normal SOD. In the nucleus, immunoreactive HNE and HHE adducts were
present 3 hours after intense light exposure and prior to the appearance of TUNEL staining in
the ONL (Tanito et al., 2005a). The rapid induction of oxidative stress from intense light may
help explain why antioxidants are most effective in vivo if given prior to light treatment. Figure
5 illustrates rhodopsin recovery and retinal morphology in light exposed rats given a single
dose of the synthetic antioxidant DMTU. There was almost complete protection when DMTU
was administered 30 minutes before the start of light, but the antioxidant was ineffective when
given 15–60 minutes after lights on. This early onset of light-induced oxidative damage
implicates the initial rate of rhodopsin bleaching in the damage mechanism.
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
This species has a retina containing60% cones (Table 1) and has a yellow lens. Only in aphakic animals treated with near-UVwavelength light (366 nm) was photoreceptor light damage achieved. Most recently, DavidHicks and associates, at the Cellular and Integrative Neurosciences Institut (CNRS) inStrasbourg, France, have conducted light damage studies on the Nile grass rat. This rodent has33% cones distributed evenly across its retina (Table 1), making it technically rod-dominant,but it is a diurnal species. Its lens lacks the yellow pigment found in squirrels. Eight hours of15,000 lux white light in unrestrained animals, or 2 hours of 20,000 lux white light in ananesthetized dilated animal, produced no substantial evidence of light damage; moreover, timeof day had no effect. These animals had been reared in cyclic light of a standard rodent colony,including 2 weeks of dim cyclic light (20 lux) and 12 hours in complete darkness prior tointense light exposure. As in the gray squirrel, short wavelength light (410 nm) was requiredto achieve photoreceptor degeneration in the Nile grass rat, but this also resulted in globalretinal destruction quite distinct from the progression of light damage described for roddominantrodent models (Boudard and Hicks, manuscript in preparation).4.2.1 Primates and Light Damage—Diurnal vs. nocturnal differences in light damagesusceptibility are not unique to rodents; such a distinction is also found in primates.Photoreceptor damage from intense visible light has been studied in the nocturnal owl monkey(Fullmer et al., 1978) and in diurnal macaques (Sykes et al., 1978; Tso, 1987). Both are roddominant,as are primates typically, although the owl monkey is relatively rod-enriched (Finlayet al., 2008). Both possess a fovea, but only in macaques is there a pure-cone foveola: in theowl monkey fovea, rods still outnumber cones by 14 to 1 (Wikler and Rakic, 1990). Macaquespossess M- and S-cones but functional S-cones are absent from the owl monkey retina (Jacobset al., 1996). Similar white light exposure (ca. 0.2 W/cm2 for 30 minutes) was catastrophic inthe nocturnal owl monkey retina (Fuller et al., 1978), but caused negligible photoreceptordamage in the diurnal macaque retina (Tso, 1987). Earlier, Sykes et al. (1981) also studiedwhite light damage in macaque retina, but used longer exposures (12 hr) at an intensity farlower (0.2–0.8 mW/cm2) than that used by Tso (1987). Sykes et al. (1981) were able todistinguish the threshold intensities required for detectable light damage in rods vs. cones,limited to outer segment disruption. Significantly, cone OS exhibited a lower threshold thanROS, opposite what is found in nocturnal rodents and raising questions about the rod-to-conebystander effect hypothesis with regard to the diurnal primate retina. At intensities high enoughto damage both ROS and COS, these authors also found that COS damage occurred at the basewhereas ROS damage occurred at the distal tip. The significance of this observation is unclear.A consistent finding in both rodents and primates is the vulnerability difference between diurnaland nocturnal retinas. The relative resistance of diurnal retinas is likely due to multiple factorsthat may either operate less robustly in nocturnal retinas, or may be absent from them altogether.An elegant comparative study suggests one feature that could contribute resistance to the rodsof diurnal retinas, including the rod-dominant retinas of diurnal primates. Solovei andcolleagues (2009) have reported a division in the architecture of rod nuclear chromatin betweennocturnal and diurnal mammals. With a computer model, they suggest that rod nuclei innocturnal species function as collecting lenses, helping to increase photon capture per rod cellcompared to that of the rods of diurnal species. Thus, the ROS of nocturnal animals may simplycollect more light energy from incident radiation. By having a lower quantum catch, diurnalrods would be less vulnerable to damage and less able to exert a bystander effect on cones,whereas the capture of photons in nocturnal rods would enhance the likelihood of rod and conedamage.Comparative studies also show that some diurnal retinas are more resistant to light damagethan others. Use of very intense monochromatic light exposure on the macaque retina resultsin partially selective ablation of cone types: blue light irreversibly damages S-cones; greenlight damages M-cones, which recover about a week later; and red light has no effect (Sperling1986). Gerald Jacobs and associates at the University of California Santa Barbara used thissame approach in the 1970s with California ground squirrel, a strictly diurnal rodent with 85%cones in its retina and a pure-cone central region (Table 1). Even a full day’s exposure to intensemonochromatic light failed to produce any cone cell damage in the eyes of anesthetized groundsquirrels with dilated pupils (Gerald H. Jacobs, personal communication). These wild-caughtanimals were reared in ambient southern California conditions, and then when capturedmaintained under standard cyclic animal room lighting. While it’s tempting to speculate thatcone dominance is responsible for the ground squirrel’s resistance, crucially the rod-dominantNile grass rat appears equally resistant. There are undoubtedly other yet-to-be-discoveredprotective factors at play in the diurnal rodent retina. 5. Protection Against Retinal Light Damage5.1 Antioxidants and Ocular Drug DeliveryNatural and synthetic antioxidants prevent retinal light damage and photoreceptor cell loss.This includes the natural L-stereoisomer of ascorbic acid (Organisciak et al., 1985; Li et al.,1985) as well as its D-stereoisomer, which is an antioxidant but not a cofactor for enzymemediatedhydroxylation (Organisciak et al., 1989b; ibid 1992). The L-stereoisomer of Nacetyl-cysteine (Tanito et al., 2002; Busch et al., 1999) and N-nitro-arginine methyl ester(Goureau et al., 1993; Donovan et al., 2001; Kaldi et al., 2003) also effectively reduce lightdamage, but their D-stereoisomers are ineffective. Natural substances such as ginkgo bilobaextract (Ranchon et al., 1999) probably function directly as antioxidants during light exposure,while others, including saffron (Maccarone et al., 2008) and sulforaphane (Tanito et al.,2005a) induce the synthesis of antioxidative enzymes. Synthetic antioxidants that have alsoproven effective include WR-77913, a radioprotective dye that quenches singlet oxygen (Reméet al., 1991); the free radical spin trap phenyl-N-tert-butylnitrone (PBN) (Ranchon et al.,2001; Tomita et al., 2005, Tanito et al., 2005b); OT-551, a TEMPOL derivative that catalyzesthe degradation of superoxide (Tanito et al., 2007b); and dimethylthiourea (DMTU), aquencher of H2O2 and hydroxyl radicals (Lam et al., 1989; Organisciak et al., 1992; Ranchonet al., 1999; Vaughan et al., 2006). Based on the specificities of antioxidants for different formsof reactive oxygen, it is tempting to implicate particular oxygen radicals in the mechanism oflight damage. However, no antioxidant exhibits complete fidelity with a single species ofreactive oxygen, making that primarily speculation. Another problem with inferringmechanism is the lack of evidence, in all cases, that an antioxidant actually passed the bloodretinalbarrier and was taken up by the tissue. Finally, several different forms of reactive oxygenare probably involved in the damage process, albeit at different times. As an example,macrophages invade damaged tissues and release several different types of reactive oxygen,but their appearance in retina during light damage is relatively late. Still, the effectiveness ofa large number of antioxidants is compelling evidence that oxidative stress is an integral partof the light damage process.Oxidative stress also appears to be an early event in the retinal light damage process. Demontiset al. (2002) detected an increase in light-induced oxidation in isolated rod cells within minutesof light onset. Changes in fluorescence detectable oxidation in the inner and outer segmentswere attributed to retinaldehyde photoisomerization and mitochondrial metabolism,respectively. In cultured rod cells, Yang et al. (2003) found changes in fluorescence in themitochondria-rich inner segment ellipsoids, which were induced by blue light and quenchedby antioxidants. The rapid appearance of oxidative stress in isolated photoreceptors does notappear to be an in vitro artifact. Retinal ganglion cells in culture also exhibit mitochondrialmediated oxidation and cellular apoptosis, but this requires 2–3 days of intense light (Osborneet al., 2008). In photoreceptor cell inner segments, superoxide dismutase (SOD) and catalasenormally reduce the effects of superoxide and H2O2 generated by mitochondrial metabolism(Rao et al., 1985; Atalla et al., 1987). Mittag et al. (1999) found that transgenic mice with amutated cytoplasmic form of SOD incurred greater retinal light damage than did non-transgenicanimals with normal SOD. In the nucleus, immunoreactive HNE and HHE adducts werepresent 3 hours after intense light exposure and prior to the appearance of TUNEL staining inthe ONL (Tanito et al., 2005a). The rapid induction of oxidative stress from intense light mayhelp explain why antioxidants are most effective in vivo if given prior to light treatment. Figure5 illustrates rhodopsin recovery and retinal morphology in light exposed rats given a singledose of the synthetic antioxidant DMTU. There was almost complete protection when DMTUwas administered 30 minutes before the start of light, but the antioxidant was ineffective whengiven 15–60 minutes after lights on. This early onset of light-induced oxidative damageimplicates the initial rate of rhodopsin bleaching in the damage mechanism.
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
Spesies ini memiliki retina yang mengandung
60% kerucut (Tabel 1) dan memiliki lensa kuning. Hanya pada hewan aphakic diobati dengan dekat-UV
panjang gelombang cahaya (366 nm) adalah kerusakan ringan fotoreseptor dicapai. Baru-baru ini, David
Hicks dan rekan, di Seluler dan Integratif ilmu saraf Institut (CNRS) di
Strasbourg, Prancis, telah melakukan penelitian kerusakan ringan di rumput tikus Nil. Hewan ini memiliki
33% kerucut merata di seluruh retina (Tabel 1), sehingga secara teknis batang-dominan,
tetapi merupakan spesies diurnal. Lensa tidak memiliki pigmen kuning yang ditemukan dalam tupai. Delapan jam
cahaya putih 15.000 lux pada hewan tak terkendali, atau 2 jam dari 20.000 lux cahaya putih dalam
hewan dilatasi dibius, tidak menghasilkan bukti substansial kerusakan ringan; apalagi, waktu
hari tidak berpengaruh. Hewan ini telah dibesarkan dalam cahaya siklik dari tikus koloni standar,
termasuk 2 minggu cahaya redup siklik (20 lux) dan 12 jam dalam gelap gulita sebelum
paparan cahaya yang kuat. Seperti dalam tupai abu-abu, panjang gelombang cahaya pendek (410 nm) diperlukan
untuk mencapai fotoreseptor degenerasi di rumput tikus Nil, tapi ini juga mengakibatkan global yang
kehancuran retina cukup berbeda dari perkembangan kerusakan ringan dijelaskan untuk roddominant
model tikus (Boudard dan Hicks , naskah dalam persiapan).
4.2.1 Primata dan Light Kerusakan-diurnal vs perbedaan nokturnal kerusakan ringan
kerentanan tidak unik untuk tikus; Perbedaan tersebut juga ditemukan pada primata.
kerusakan fotoreseptor dari cahaya tampak intens telah dipelajari dalam burung hantu monyet nokturnal
dan kera diurnal (Fullmer et al, 1978). (Sykes et al, 1978;. Tso, 1987). Keduanya roddominant,
seperti primata biasanya, meskipun monyet burung hantu relatif batang-diperkaya (Finlay
et al., 2008). Keduanya memiliki fovea, tetapi hanya dalam kera apakah ada foveola murni-cone: di
fovea burung hantu monyet, batang masih melebihi jumlah kerucut dengan 14-1 (Wikler dan Rakic, 1990). Kera
memiliki M dan S-kerucut tapi S-kerucut fungsional absen dari retina burung hantu monyet (Jacobs
et al., 1996). Paparan cahaya putih yang sama (ca. 0,2 W / cm2 selama 30 menit) adalah bencana di
dalam nocturnal burung hantu monyet retina (Fuller et al., 1978), tetapi menyebabkan fotoreseptor diabaikan
kerusakan di retina monyet diurnal (Tso, 1987). Sebelumnya, Sykes et al. (1981) juga mempelajari
kerusakan cahaya putih di retina monyet, tetapi digunakan eksposur lagi (12 jam) pada intensitas yang jauh
lebih rendah (0,2-0,8 mW / cm2) daripada yang digunakan oleh Tso (1987). Sykes et al. (1981) mampu
membedakan intensitas ambang batas yang diperlukan untuk kerusakan ringan terdeteksi dalam batang vs kerucut,
terbatas pada bagian luar gangguan segmen. Secara signifikan, kerucut OS dipamerkan batas bawah dari
ROS, berlawanan dengan apa yang ditemukan pada hewan pengerat nokturnal dan memunculkan pertanyaan tentang batang-to-kerucut
efek pengamat hipotesis berkaitan dengan retina primata diurnal. Pada intensitas yang cukup tinggi
untuk merusak baik ROS dan COS, penulis ini juga menemukan bahwa kerusakan COS terjadi di dasar
sedangkan kerusakan ROS terjadi di ujung distal. Arti penting dari pengamatan ini tidak jelas.
Sebuah temuan yang konsisten di kedua tikus dan primata adalah perbedaan kerentanan antara diurnal
retina dan nokturnal. Hambatan relatif retina diurnal mungkin karena beberapa faktor
yang mungkin baik beroperasi kurang kokoh di retina malam hari, atau mungkin tidak ada dari mereka sama sekali.
Sebuah studi banding elegan menunjukkan salah satu fitur yang dapat memberikan kontribusi resistensi terhadap batang
dari retina diurnal, termasuk retina batang dominan primata diurnal. Solovei dan
rekan (2009) telah melaporkan sebuah divisi dalam arsitektur kromatin nuklir batang antara
mamalia nokturnal dan diurnal. Dengan model komputer, mereka menunjukkan bahwa inti batang dalam
spesies nokturnal berfungsi sebagai mengumpulkan lensa, membantu meningkatkan foton capture per sel batang
dibandingkan dengan yang ada pada batang spesies diurnal. Dengan demikian, ROS hewan nokturnal mungkin hanya
mengumpulkan energi lebih banyak cahaya dari radiasi insiden. Dengan memiliki menangkap kuantum yang lebih rendah, diurnal
batang akan kurang rentan terhadap kerusakan dan kurang mampu mengerahkan efek pengamat pada kerucut,
sedangkan penangkapan foton dalam batang malam hari akan meningkatkan kemungkinan batang dan kerucut
kerusakan.
Studi banding juga menunjukkan bahwa beberapa retina diurnal lebih tahan terhadap kerusakan ringan
daripada yang lain. Penggunaan paparan cahaya yang sangat intens monokromatik pada hasil retina kera
di ablasi sebagian selektif jenis cone: cahaya biru ireversibel kerusakan S-kerucut; hijau
kerusakan ringan M-kerucut, yang pulih sekitar seminggu kemudian; dan lampu merah tidak memiliki efek (Sperling
1986). Gerald Jacobs dan rekan di University of California Santa Barbara menggunakan ini
pendekatan yang sama di tahun 1970-an dengan California tupai, hewan pengerat ketat diurnal dengan 85%
kerucut di retina dan wilayah tengah murni-kerucut (Tabel 1). Eksposur bahkan sehari penuh untuk intens
cahaya monokromatik gagal menghasilkan kerusakan sel kerucut di mata tanah dibius
tupai dengan pupil melebar (Gerald H. Jacobs, komunikasi pribadi). Ini liar tertangkap
hewan dipelihara dalam kondisi California selatan ambient, dan kemudian ketika ditangkap
dipertahankan di bawah siklik ruang hewan pencahayaan standar. Sementara itu menggoda untuk berspekulasi bahwa
dominasi kerucut bertanggung jawab untuk ketahanan tanah tupai, krusial batang-dominan
rumput Nil tikus muncul sama tahan. Ada diragukan lagi lain belum-to-be-ditemukan
faktor protektif bermain di tikus retina diurnal. 5. Perlindungan Terhadap retina Cahaya Kerusakan
5.1 Antioksidan dan okuler Pengiriman Obat
Alam dan antioksidan sintetik mencegah kerusakan cahaya retina dan hilangnya sel fotoreseptor.
Ini termasuk alami L-stereoisomer asam askorbat (Organisciak et al, 1985;.. Li et al,
1985 ) serta D-stereoisomer, yang merupakan antioksidan tetapi tidak kofaktor untuk enzymemediated
hidroksilasi (Organisciak et al, 1989b;. ibid 1992). L-stereoisomer dari Nacetyl-
sistein (Tanito et al, 2002;. Busch et al, 1999.) dan N-nitro-arginin metil ester
(Goureau et al, 1993;. Donovan et al, 2001;. Kaldi et al. 2003) juga efektif mengurangi cahaya
kerusakan, tetapi mereka D-stereoisomer tidak efektif. Bahan alami seperti ginkgo biloba
ekstrak (Ranchon et al., 1999) mungkin berfungsi langsung sebagai antioksidan saat terpapar cahaya,
sementara yang lain, termasuk kunyit (Maccarone et al., 2008) dan sulforaphane (Tanito et al.,
2005a) menginduksi sintesis enzim antioksidan. Antioksidan sintetis yang juga
terbukti efektif termasuk WR-77913, pewarna radioprotective yang memuaskan singlet oksigen (reme
et al, 1991.); bebas spin trap radikal fenil-N-tert-butylnitrone (PBN) (Ranchon et al,.
2001; Tomita et al, 2005, Tanito et al, 2005b..); OT-551, turunan TEMPOL yang mengkatalisis
degradasi superoksida (Tanito et al, 2007b.); dan dimethylthiourea (DMTU), seorang
pemadam H2O2 dan radikal hidroksil (Lam et al, 1989;. Organisciak et al, 1992;. Ranchon
et al, 1999;.. Vaughan et al, 2006). Berdasarkan kekhususan antioksidan untuk berbagai bentuk
oksigen reaktif, sangat menggoda untuk melibatkan radikal oksigen tertentu dalam mekanisme
kerusakan ringan. Namun, tidak ada pameran antioksidan kesetiaan lengkap dengan spesies tunggal
oksigen reaktif, membuat yang terutama spekulasi. Masalah lain dengan menyimpulkan
mekanisme adalah kurangnya bukti, dalam semua kasus, bahwa antioksidan bisa lulus bloodretinal
penghalang dan dibawa oleh jaringan. Akhirnya, berbagai bentuk oksigen reaktif
mungkin terlibat dalam proses kerusakan, meskipun pada waktu yang berbeda. Sebagai contoh,
makrofag menyerang jaringan yang rusak dan melepaskan beberapa jenis oksigen reaktif,
namun penampilan mereka di retina selama kerusakan ringan relatif terlambat. Namun, efektivitas
sejumlah besar antioksidan adalah bukti kuat bahwa stres oksidatif adalah bagian integral
dari proses kerusakan ringan.
Stres oksidatif juga tampaknya menjadi peristiwa awal proses kerusakan ringan retina. Demontis
et al. (2002) mendeteksi peningkatan oksidasi cahaya diinduksi dalam sel batang terisolasi dalam beberapa menit
dari onset cahaya. Perubahan fluoresensi oksidasi terdeteksi di segmen dalam dan luar
yang dikaitkan dengan retinaldehid photoisomerization dan metabolisme mitokondria,
masing-masing. Dalam sel batang berbudaya, Yang et al. (2003) menemukan perubahan fluoresensi di
ellipsoids segmen dalam kaya mitokondria, yang diinduksi oleh cahaya biru dan dipadamkan
oleh antioksidan. Penampilan cepat stres oksidatif pada fotoreseptor terisolasi tidak
muncul untuk menjadi artefak in vitro. Sel-sel ganglion retina dalam budaya juga menunjukkan mitokondria
dimediasi oksidasi dan apoptosis seluler, tetapi hal ini membutuhkan 2-3 hari cahaya yang kuat (Osborne
et al., 2008). Dalam segmen dalam sel fotoreseptor, superoksida dismutase (SOD) dan katalase
biasanya mengurangi efek superoksida dan H2O2 yang dihasilkan oleh metabolisme mitokondria
(Rao et al, 1985;.. Atalla et al, 1987). Mittag et al. (1999) menemukan bahwa tikus transgenik dengan
bentuk sitoplasma bermutasi SOD terjadi kerusakan ringan retina lebih besar daripada non-transgenik
hewan dengan SOD normal. Dalam inti, HNE immunoreactive dan hhe adduct yang
hadir 3 jam setelah paparan cahaya yang kuat dan sebelum penampilan TUNEL pewarnaan di
dalam Onl (Tanito et al., 2005a). Induksi cepat stres oksidatif dari cahaya yang kuat dapat
membantu menjelaskan mengapa antioksidan yang paling efektif dalam vivo jika diberikan sebelum perawatan ringan. Gambar
5 menggambarkan pemulihan rhodopsin dan morfologi retina dalam cahaya terkena tikus yang diberikan satu
dosis antioksidan DMTU sintetis. Ada perlindungan hampir selesai ketika DMTU
diberikan 30 menit sebelum dimulainya cahaya, tapi antioksidan tidak efektif ketika
diberikan 15-60 menit setelah lampu menyala. Ini onset awal kerusakan oksidatif yang disebabkan cahaya
berimplikasi tingkat awal rhodopsin pemutihan dalam mekanisme kerusakan.
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2024 I Love Translation. All reserved.

E-mail: