conditions [29,61,108,110]. Lipids have not been found in the leached  terjemahan - conditions [29,61,108,110]. Lipids have not been found in the leached  Bahasa Indonesia Bagaimana mengatakan

conditions [29,61,108,110]. Lipids

conditions [29,61,108,110]. Lipids have not been found in the leached material
[29]. Some examples of the leaking as a function of temperature are given in
Figure 10.5. The material solubilized during gelatinization can be characterized
by staining with iodine, either in solution or in preparation for microscopy. The
material leached from undamaged potato and cereal starches in the temperature
interval 50 to 70°C is mainly composed of amylose. The solubilized material
increases in molecular weight and becomes more branched with increasing
temperature [28,115,116]. In an oat starch suspension heated to 90°C, amylose
was found outside the granules, forming a network structure around them [59].
In barley starch, on the other hand, granules were found to still be stained
heavily blue at 90°C, whereas at 95°C not much blue staining was found inside
the granules. Demixing of amylose and amylopectin was observed in the microscope for potato starch [61]. If the starch contains a proportion of enzymatically
or mechanically damaged starch, this will influence the nature of the solubilized
material. Extraction of damaged granules with cold water preferentially leaches
out amylopectin of low molecular weight [117].
It has been suggested that in maize and wheat starches most of the amylose
will be solubilized before leaking of amylopectin begins [110]. In oat starch,
on the other hand, a concurrent leaking of amylose and amylopectin seems to
occur [111]. In case of oat starch, it was suggested that instead an intermediate
material (molecules less branched than amylopectin) is coleached with amylose [112].
FIGURE 10.5Leaking of amylose during heating of potato (), wheat (), maize
(), and oat () starches. (Adapted from Eliasson, A.-C., J. Text Stud., 17, 253, 1986;
Eliasson, A.-C., Starch/Stärke, 37, 411, 1985; Doublier, J.-L. et al., Cereal Chem., 64,
21, 1987.)
40
30
20
Solubility (%)
10
0
02040
Temperature (°C)
60 80 100
© 2006 by Taylor & Francis Group, LLC
Starch: Physicochemical and Functional Aspects 411
The solubility has been found to depend on the heating rate for wheat
starch, but not for maize starch [114]. A prolonged holding time at 96°C also
increases the solubility [111]. If the mechanical treatment is severe, this will
also change the nature of the solubilized material, and the solubility will
increase [111,118]. In normal starches (e.g., normal maize) an increased proportion of amylopectin is found in the solubilized material when the stirring
increases [84]. Increased stirring increases the leaking also from high-amylose
varieties [84].
Not all amylose leaches out during heating. After heating at 90°C, pea
starch was found to contain 16% amylose; wheat, 8.3%; and maize, 8.0%
[108]. The solubilized material corresponds to only 6 to 9% of the total starch
in high-amylose starches but to 60 to 76% in normal starch [84]. The parts of
the granules remaining after gelatinization (ghosts) contain mainly amylopectin without any crystalline order [116]. A decrease in amylose content from
27.4% in native barley starch to 6.2% in a ghost preparation was reported.
As will be described later, the leaking of amylose is necessary for gel
formation, but in many cases the leaking of amylose causes problems, as is
the case for pasta or potato flakes. To avoid free amylose that causes stickiness,
monoglycerides or other emulsifiers might be added to form a helical inclusion
complex with amylose.
10.3.3 MEANS OFINFLUENCINGSTARCHGELATINIZATION
There are many means of affecting the gelatinization temperature, both on
purpose and unintentionally. This can be achieved through the addition of
other food components to the starch, by using genotypes differing in amylose/amylopectin ratios, by chemical modification, and by annealing or other
Gelatinization is brought about as a consequence of certain combinations
of heat and water content; however, when inspecting Figure 10.2 it is evident
that water and heat might influence the behavior of starch without causing
gelatinization. Here, two different possibilities are investigated: heat–moisture
treatment and annealing. In fact, this is a rather artificial classification because
the underlying mechanism is more or less the same; however, it has become
customary in the literature to refer to treatments at low water contents and
temperatures above the gelatinization temperature range as heat–moisture
treatments and to treatments involving high water contents at temperatures
below the gelatinization temperature range as annealing. A third possibility is
the extrusion process, where high temperatures and low water contents are
combined with high shear forces due to mechanical treatment. The following
discussion is limited to systems without the application of shear forces.
© 2006 by Taylor & Francis Group, LLC
types of heat treatment. In this section, treatments corresponding to Figure
10.2are described, and other approaches are described in subsequent sections.
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
conditions [29,61,108,110]. Lipids have not been found in the leached material[29]. Some examples of the leaking as a function of temperature are given inFigure 10.5. The material solubilized during gelatinization can be characterizedby staining with iodine, either in solution or in preparation for microscopy. Thematerial leached from undamaged potato and cereal starches in the temperatureinterval 50 to 70°C is mainly composed of amylose. The solubilized materialincreases in molecular weight and becomes more branched with increasingtemperature [28,115,116]. In an oat starch suspension heated to 90°C, amylosewas found outside the granules, forming a network structure around them [59].In barley starch, on the other hand, granules were found to still be stainedheavily blue at 90°C, whereas at 95°C not much blue staining was found insidethe granules. Demixing of amylose and amylopectin was observed in the microscope for potato starch [61]. If the starch contains a proportion of enzymaticallyor mechanically damaged starch, this will influence the nature of the solubilizedmaterial. Extraction of damaged granules with cold water preferentially leachesout amylopectin of low molecular weight [117].It has been suggested that in maize and wheat starches most of the amylosewill be solubilized before leaking of amylopectin begins [110]. In oat starch,on the other hand, a concurrent leaking of amylose and amylopectin seems tooccur [111]. In case of oat starch, it was suggested that instead an intermediatematerial (molecules less branched than amylopectin) is coleached with amylose [112].FIGURE 10.5Leaking of amylose during heating of potato (), wheat (), maize(), and oat () starches. (Adapted from Eliasson, A.-C., J. Text Stud., 17, 253, 1986;Eliasson, A.-C., Starch/Stärke, 37, 411, 1985; Doublier, J.-L. et al., Cereal Chem., 64,21, 1987.)403020Solubility (%)10002040Temperature (°C)60 80 100© 2006 by Taylor & Francis Group, LLCStarch: Physicochemical and Functional Aspects 411The solubility has been found to depend on the heating rate for wheatstarch, but not for maize starch [114]. A prolonged holding time at 96°C alsoincreases the solubility [111]. If the mechanical treatment is severe, this willalso change the nature of the solubilized material, and the solubility willincrease [111,118]. In normal starches (e.g., normal maize) an increased proportion of amylopectin is found in the solubilized material when the stirringincreases [84]. Increased stirring increases the leaking also from high-amylosevarieties [84].Not all amylose leaches out during heating. After heating at 90°C, peastarch was found to contain 16% amylose; wheat, 8.3%; and maize, 8.0%[108]. The solubilized material corresponds to only 6 to 9% of the total starchin high-amylose starches but to 60 to 76% in normal starch [84]. The parts ofthe granules remaining after gelatinization (ghosts) contain mainly amylopectin without any crystalline order [116]. A decrease in amylose content from27.4% in native barley starch to 6.2% in a ghost preparation was reported.As will be described later, the leaking of amylose is necessary for gelformation, but in many cases the leaking of amylose causes problems, as isthe case for pasta or potato flakes. To avoid free amylose that causes stickiness,monoglycerides or other emulsifiers might be added to form a helical inclusioncomplex with amylose.10.3.3 MEANS OFINFLUENCINGSTARCHGELATINIZATIONThere are many means of affecting the gelatinization temperature, both onpurpose and unintentionally. This can be achieved through the addition ofother food components to the starch, by using genotypes differing in amylose/amylopectin ratios, by chemical modification, and by annealing or otherGelatinization is brought about as a consequence of certain combinationsof heat and water content; however, when inspecting Figure 10.2 it is evidentthat water and heat might influence the behavior of starch without causinggelatinization. Here, two different possibilities are investigated: heat–moisturetreatment and annealing. In fact, this is a rather artificial classification becausethe underlying mechanism is more or less the same; however, it has becomecustomary in the literature to refer to treatments at low water contents andtemperatures above the gelatinization temperature range as heat–moisturetreatments and to treatments involving high water contents at temperaturesbelow the gelatinization temperature range as annealing. A third possibility isthe extrusion process, where high temperatures and low water contents arecombined with high shear forces due to mechanical treatment. The followingdiscussion is limited to systems without the application of shear forces.© 2006 by Taylor & Francis Group, LLCtypes of heat treatment. In this section, treatments corresponding to Figure10.2are described, and other approaches are described in subsequent sections.
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
kondisi [29,61,108,110]. Lipid belum ditemukan dalam bahan pencucian
[29]. Beberapa contoh bocornya sebagai fungsi temperatur diberikan dalam
Gambar 10.5. Bahan dilarutkan selama gelatinisasi dapat dicirikan
dengan pewarnaan dengan yodium, baik dalam larutan atau dalam persiapan untuk mikroskopi. The
materi kehabisan dari kentang dan sereal rusak pati dalam suhu
selang 50 sampai 70 ° C terutama terdiri dari amilosa. Bahan terlarut
peningkatan berat molekul dan menjadi lebih bercabang dengan meningkatnya
suhu [28115116]. Dalam suspensi pati oat dipanaskan sampai 90 ° C, amilosa
ditemukan di luar butiran, membentuk struktur jaringan di sekitar mereka [59].
Dalam pati barley, di sisi lain, butiran ditemukan masih bernoda
sangat biru pada suhu 90 ° C , sedangkan pada 95 ° C tidak banyak pewarnaan biru ditemukan di dalam
butiran. Demixing dari amilosa dan amilopektin diamati di mikroskop untuk tepung kentang [61]. Jika pati mengandung proporsi enzimatis
atau mekanis rusak pati, ini akan mempengaruhi sifat terlarut
material. Ekstraksi butiran yang rusak dengan air dingin istimewa larut
keluar amilopektin berat molekul rendah [117].
Ia telah mengemukakan bahwa pada jagung dan gandum pati sebagian besar amilosa tersebut
akan dilarutkan sebelum bocor dari amilopektin dimulai [110]. Dalam pati gandum,
di sisi lain, bocor bersamaan amilosa dan amilopektin tampaknya
terjadi [111]. Dalam kasus pati gandum, ia menyarankan bahwa alih-alih perantara
bahan (molekul kurang bercabang dari amilopektin) yang coleached dengan amilosa [112].
GAMBAR 10.5Leaking amilosa selama pemanasan kentang (?), gandum (?), jagung
(? ), dan oat (?) pati. (Diadaptasi dari Eliasson, A.-C, J. Teks Stud, 17, 253, 1986;.
Eliasson, A.-C, Pati / Starke, 37, 411, 1985; Doublier, J.-L. et al ., Cereal Chem, 64,.
21, 1987.)
40
30
20
Kelarutan (%)
10
0
02040
Suhu (° C)
60 80 100
© 2006 oleh Taylor & Francis Group, LLC
Pati: fisiko dan Aspek Fungsional 411
kelarutan memiliki ditemukan tergantung pada tingkat pemanasan untuk gandum
pati, tetapi tidak untuk pati jagung [114]. Waktu memegang berkepanjangan pada 96 ° C juga
meningkatkan kelarutan [111]. Jika perlakuan mekanik parah, ini akan
juga mengubah sifat bahan terlarut, dan kelarutan akan
meningkat [111118]. Dalam pati normal (misalnya, jagung normal) peningkatan proporsi amilopektin ditemukan dalam bahan terlarut saat pengadukan
meningkat [84]. Peningkatan pengadukan meningkatkan bocor juga dari tinggi amilosa
varietas [84].
Tidak semua amilosa larut selama pemanasan. Setelah pemanasan pada suhu 90 ° C, kacang
pati ditemukan mengandung 16% amilosa; gandum, 8,3%; dan jagung, 8,0%
[108]. Bahan terlarut sesuai dengan hanya 6 sampai 9% dari total pati
di pati tinggi amilosa tetapi untuk 60-76% pada pati yang normal [84]. Bagian-bagian dari
yang tersisa setelah gelatinisasi (hantu) butiran terutama mengandung amilopektin tanpa urutan kristal [116]. Penurunan kandungan amilosa dari
27,4% pada pati gandum asli 6,2% dalam persiapan hantu dilaporkan.
Seperti yang akan dijelaskan kemudian, bocornya amilosa diperlukan untuk gel
pembentukan, tetapi dalam banyak kasus bocornya amilosa menyebabkan masalah, seperti adalah
kasus untuk pasta atau kentang serpih. Untuk menghindari amilosa gratis yang menyebabkan kekakuan,
monogliserida atau pengemulsi lain mungkin ditambahkan untuk membentuk inklusi heliks
kompleks dengan amilosa.
10.3.3 SARANA OFINFLUENCINGSTARCHGELATINIZATION
Ada banyak cara mempengaruhi suhu gelatinisasi, baik pada
tujuan dan tidak sengaja. Hal ini dapat dicapai melalui penambahan
komponen makanan lain untuk pati, dengan menggunakan genotipe berbeda dalam rasio amilosa / amilopektin, dengan modifikasi kimia, dan oleh anil atau lainnya
Gelatinisasi dibawa sekitar sebagai konsekuensi dari kombinasi tertentu
dari panas dan kadar air; Namun, ketika memeriksa Gambar 10.2 terbukti
bahwa air dan panas dapat mempengaruhi perilaku pati tanpa menyebabkan
gelatinisasi. Di sini, dua kemungkinan yang berbeda diselidiki: panas-kelembaban
pengobatan dan anil. Bahkan, ini adalah klasifikasi yang agak artifisial karena
mekanisme yang mendasari kurang lebih sama; Namun, hal itu telah menjadi
kebiasaan dalam literatur untuk merujuk perawatan di isi air rendah dan
suhu di atas kisaran suhu gelatinisasi sebagai panas-kelembaban
perawatan dan pengobatan yang melibatkan kadar air yang tinggi pada suhu
di bawah kisaran suhu gelatinisasi sebagai anil. Kemungkinan ketiga adalah
proses ekstrusi, di mana suhu tinggi dan kadar air rendah
dikombinasikan dengan gaya geser tinggi karena perlakuan mekanik. Berikut ini
diskusi terbatas pada sistem tanpa penerapan gaya geser.
© 2006 oleh Taylor & Francis Group, LLC
jenis perlakuan panas. Pada bagian ini, perawatan sesuai dengan Gambar
10.2are dijelaskan, dan pendekatan lain yang dijelaskan dalam bagian berikutnya.
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2024 I Love Translation. All reserved.

E-mail: