dependent on the water content [103]; therefore, the hydration of star terjemahan - dependent on the water content [103]; therefore, the hydration of star Bahasa Indonesia Bagaimana mengatakan

dependent on the water content [103

dependent on the water content [103]; therefore, the hydration of starch, or
perhaps rather the distribution of water inside the starch granule, is of great
importance. When starch is placed in excess water at room temperature, the
water content inside the granule at equilibrium will be 0.54 g water per g starch
[80], which is much lower than the final value of the water-holding capacity,
or swelling volume, of the gelatinized starch. It has therefore been suggested
that, during the initial part of the gelatinization, endotherm hydration of amorphous parts occurs, causing the Tg
to be passed. In excess water, this process,
as well as the melting of crystallites, occurs very quickly, whereas at lower
water contents both processes occur much more slowly; therefore, they separate
into two distinct peaks in the DSC thermogram. At even lower water contents,
a situation will finally be reached when no more water is distributed to the
amorphous starch and the melting has to occur at the initial water content. The
plasticizing effect of water is then low, meaning that the melting temperature
of the crystallites is very high. This is exactly what is observed: At water contents
below 30% (w/w) only one or no endotherm at all is detected at temperatures
below 100°C [88,97,100]. According to the study by Perry and Donald [93a],
it is more correct to describe gelatinization as depending on the availability of
a solvent. They suggested that gelatization begins when the molecular mobility
in the amorphous regions of the starch granule reaches a critical level. This
mobility depends on the total plasticization, which in turn will depend on both
the presence of plasticizing solvent (e.g., water) and thermal energy.
The occurrence of glass transition in starch systems has been deduced
from a shift in the baseline during heating of an aqueous starch suspension
[103–105]. Such a shift in the baseline can be due to a glass transition [5,49],
but it may also be due to differences in heat capacity between the solid state
(starch granule) and the liquid state (gelatinized starch granule) [104].
FIGURE 10.3The DSC endotherm of a wheat starch suspension (58.6% water),
together with the change in x-ray diffraction intensity during heating. (Data from
Svensson et al. [7].)
100
X-ray intensity (%)
80
60
40
20
0
30 40 50
Temperature (°C)
60 70 80 90 100
Endothermic heat flow
© 2006 by Taylor & Francis Group, LLC
408 Carbohydrates in Food
The occurrence of a glass transition during the early stages of gelatinization was suggested by results of DSC experiments carried out by heating starch
systems to different temperatures during the DSC scans and then cooling and
reheating [49], as well as by the finding that the crystallinity disappears
stepwise [7]. In some starches, it has been possible to identify the Tg
just
preceding the gelatinization endotherm [5,106].
10.3.2.4 Morphological Changes
The morphological changes occurring when starch is heated in excess water
have been studied using the scanning electron microscope (SEM) [19,63]. In
some starches (e.g., potato and maize), the granules seem to swell to a similar
degree in all directions, resulting in swollen granules that are approximately
similar in shape to the original ones, just larger. The size of starch granules
during heating has been determined for some maize starches [107]. For waxy
maize, the diameter increased from 15.6 to 39.6 µm at maximum swelling; for
normal maize, the corresponding values were 14.9 to 33.3 µm; and for crosslinked waxy maize, the corresponding values were 14.5 to 31.5 µm. In another
investigation, the diameter of gelatinized starch granules was found to be 46 ±
15 µm for maize, 34 ± 24 µm for wheat, and 85 ± 25 µm for pea [108]. The
large standard deviation indicates a broad size distribution of gelatinized granules. For wheat, barley, and rye starches, the swelling is restricted in one
dimension, resulting in complicated folding of the granules [63]. The same
morphological changes occur, albeit shifted to higher temperatures, when the
water content is decreased [109]. For these cereal starches, it should then be
possible to determine the degree of heat treatment in a process by studying the
shape of the granules.
10.3.2.5 Swelling
Disordering of the crystalline domains in the starch granules is thus the first
step in gelatinization. Methods such as measuring the loss of birefringence,
DSC, or x-ray diffraction are able to measure this process in one way or another.
The values for gelatinization temperature ranges measured with these methods
industry), this first step is necessary but is not enough. For the development of
useful functional properties, such as water-holding capacity or rheological
properties, the events coming after the melting of the crystalline structure are
the important ones. It has already been noted that the starch granule absorbs
water. This absorption leads to the morphological changes described and to a
considerable swelling of starch granules. The swelling is often measured as an increase in gel volume, and some typical results are given in Figure 10.4
The swelling begins at a temperature corresponding to To
in DSC measurements, but it continues to much higher temperatures than the Tc[29]. The
© 2006 by Taylor & Francis Group, LLC
usually coincide (see Table 10.3). For the application of starch (e.g., in the food
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
dependent on the water content [103]; therefore, the hydration of starch, or
perhaps rather the distribution of water inside the starch granule, is of great
importance. When starch is placed in excess water at room temperature, the
water content inside the granule at equilibrium will be 0.54 g water per g starch
[80], which is much lower than the final value of the water-holding capacity,
or swelling volume, of the gelatinized starch. It has therefore been suggested
that, during the initial part of the gelatinization, endotherm hydration of amorphous parts occurs, causing the Tg
to be passed. In excess water, this process,
as well as the melting of crystallites, occurs very quickly, whereas at lower
water contents both processes occur much more slowly; therefore, they separate
into two distinct peaks in the DSC thermogram. At even lower water contents,
a situation will finally be reached when no more water is distributed to the
amorphous starch and the melting has to occur at the initial water content. The
plasticizing effect of water is then low, meaning that the melting temperature
of the crystallites is very high. This is exactly what is observed: At water contents
below 30% (w/w) only one or no endotherm at all is detected at temperatures
below 100°C [88,97,100]. According to the study by Perry and Donald [93a],
it is more correct to describe gelatinization as depending on the availability of
a solvent. They suggested that gelatization begins when the molecular mobility
in the amorphous regions of the starch granule reaches a critical level. This
mobility depends on the total plasticization, which in turn will depend on both
the presence of plasticizing solvent (e.g., water) and thermal energy.
The occurrence of glass transition in starch systems has been deduced
from a shift in the baseline during heating of an aqueous starch suspension
[103–105]. Such a shift in the baseline can be due to a glass transition [5,49],
but it may also be due to differences in heat capacity between the solid state
(starch granule) and the liquid state (gelatinized starch granule) [104].
FIGURE 10.3The DSC endotherm of a wheat starch suspension (58.6% water),
together with the change in x-ray diffraction intensity during heating. (Data from
Svensson et al. [7].)
100
X-ray intensity (%)
80
60
40
20
0
30 40 50
Temperature (°C)
60 70 80 90 100
Endothermic heat flow
© 2006 by Taylor & Francis Group, LLC
408 Carbohydrates in Food
The occurrence of a glass transition during the early stages of gelatinization was suggested by results of DSC experiments carried out by heating starch
systems to different temperatures during the DSC scans and then cooling and
reheating [49], as well as by the finding that the crystallinity disappears
stepwise [7]. In some starches, it has been possible to identify the Tg
just
preceding the gelatinization endotherm [5,106].
10.3.2.4 Morphological Changes
The morphological changes occurring when starch is heated in excess water
have been studied using the scanning electron microscope (SEM) [19,63]. In
some starches (e.g., potato and maize), the granules seem to swell to a similar
degree in all directions, resulting in swollen granules that are approximately
similar in shape to the original ones, just larger. The size of starch granules
during heating has been determined for some maize starches [107]. For waxy
maize, the diameter increased from 15.6 to 39.6 µm at maximum swelling; for
normal maize, the corresponding values were 14.9 to 33.3 µm; and for crosslinked waxy maize, the corresponding values were 14.5 to 31.5 µm. In another
investigation, the diameter of gelatinized starch granules was found to be 46 ±
15 µm for maize, 34 ± 24 µm for wheat, and 85 ± 25 µm for pea [108]. The
large standard deviation indicates a broad size distribution of gelatinized granules. For wheat, barley, and rye starches, the swelling is restricted in one
dimension, resulting in complicated folding of the granules [63]. The same
morphological changes occur, albeit shifted to higher temperatures, when the
water content is decreased [109]. For these cereal starches, it should then be
possible to determine the degree of heat treatment in a process by studying the
shape of the granules.
10.3.2.5 Swelling
Disordering of the crystalline domains in the starch granules is thus the first
step in gelatinization. Methods such as measuring the loss of birefringence,
DSC, or x-ray diffraction are able to measure this process in one way or another.
The values for gelatinization temperature ranges measured with these methods
industry), this first step is necessary but is not enough. For the development of
useful functional properties, such as water-holding capacity or rheological
properties, the events coming after the melting of the crystalline structure are
the important ones. It has already been noted that the starch granule absorbs
water. This absorption leads to the morphological changes described and to a
considerable swelling of starch granules. The swelling is often measured as an increase in gel volume, and some typical results are given in Figure 10.4
The swelling begins at a temperature corresponding to To
in DSC measurements, but it continues to much higher temperatures than the Tc[29]. The
© 2006 by Taylor & Francis Group, LLC
usually coincide (see Table 10.3). For the application of starch (e.g., in the food
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
tergantung pada kadar air [103]; Oleh karena itu, hidrasi pati, atau
mungkin lebih tepatnya distribusi air di dalam granul pati, adalah besar
penting. Ketika pati ditempatkan dalam kelebihan air pada suhu kamar,
kadar air dalam granul pada kesetimbangan akan 0.54 g air per gram tepung
[80], yang jauh lebih rendah dari nilai akhir dari kapasitas menahan air,
atau volume bengkak, dari pati gelatinized. Oleh karena itu telah disarankan
bahwa, selama bagian awal gelatinisasi tersebut, endoterm hidrasi bagian amorf terjadi, menyebabkan Tg
untuk dilewati. Dalam kelebihan air, proses ini,
serta pencairan kristal, terjadi sangat cepat, sedangkan pada yang lebih rendah
kadar air kedua proses terjadi lebih lambat; Oleh karena itu, mereka terpisah
menjadi dua puncak yang berbeda dalam termogram DSC. Pada kadar air yang lebih rendah,
situasi akhirnya akan tercapai bila tidak ada lagi air didistribusikan ke
pati amorf dan pencairan harus terjadi pada kadar air awal. The
efek plasticizing air kemudian rendah, yang berarti bahwa suhu leleh
dari kristalit sangat tinggi. Ini adalah persis apa yang diamati: Pada kadar air
di bawah 30% (b / b) hanya satu atau tidak ada sama sekali endoterm terdeteksi pada suhu
di bawah 100 ° C [88,97,100]. Menurut studi yang dilakukan oleh Perry dan Donald [93a],
itu lebih tepat untuk menggambarkan gelatinisasi sebagai tergantung pada ketersediaan
pelarut. Mereka menyarankan bahwa gelatization dimulai ketika mobilitas molekul
di daerah amorf dari granula pati mencapai tingkat kritis. Ini
mobilitas tergantung pada total Plasticization, yang pada gilirannya akan tergantung pada kedua
kehadiran pelarut plasticizing (misalnya, air) dan energi panas.
Terjadinya transisi kaca dalam sistem pati telah disimpulkan
dari pergeseran baseline selama pemanasan dari suspensi pati berair
[103-105]. Seperti pergeseran baseline dapat disebabkan oleh transisi kaca [5,49],
tetapi mungkin juga karena perbedaan kapasitas panas antara solid state
(granula pati) dan keadaan cair (gelatinized granula pati) [104] .
GAMBAR 10.3The DSC endoterm dari suspensi pati gandum (58,6% air),
bersama-sama dengan perubahan intensitas difraksi x-ray selama pemanasan. (Data dari
Svensson et al. [7].)
100
intensitas sinar-X (%)
80
60
40
20
0
30 40 50
Suhu (° C)
60 70 80 90 100
aliran panas endotermik
© 2006 oleh Taylor & Francis Group, LLC
408 Karbohidrat dalam makanan
Terjadinya transisi kaca selama tahap awal gelatinisasi disarankan oleh hasil percobaan DSC dilakukan dengan memanaskan pati
sistem untuk temperatur yang berbeda selama scan DSC dan kemudian pendinginan dan
pemanasan kembali [49], serta oleh menemukan bahwa kristalinitas menghilang
bertahap [7]. Dalam beberapa pati, telah memungkinkan untuk mengidentifikasi Tg
hanya
sebelum endoterm gelatinisasi [5106].
10.3.2.4 morfologi Perubahan
Perubahan morfologi yang terjadi ketika pati dipanaskan dalam kelebihan air
telah dipelajari dengan menggunakan mikroskop elektron scanning (SEM) [19 , 63]. Dalam
beberapa pati (misalnya, kentang dan jagung), butiran tampaknya membengkak menjadi serupa
gelar ke segala arah, sehingga butiran bengkak yang kira-kira
mirip dengan bentuk yang asli, hanya lebih besar. Ukuran granula pati
selama pemanasan telah ditentukan untuk beberapa pati jagung [107]. Untuk lilin
jagung, diameter meningkat 15,6-39,6 pm di pembengkakan maksimum; untuk
jagung normal, nilai-nilai yang sesuai adalah 14,9-33,3 mm; dan untuk silang jagung lilin, nilai-nilai yang sesuai adalah 14,5-31,5 pm. Dalam lain
penyelidikan, diameter granula pati gelatinized ditemukan 46 ±
15 pM untuk jagung, 34 ± 24 pM untuk gandum, dan 85 ± 25 pM untuk kacang [108]. The
deviasi standar besar menunjukkan distribusi ukuran luas butiran gelatinized. Untuk gandum, barley, dan pati gandum, pembengkakan dibatasi dalam satu
dimensi, sehingga lipat rumit dari butiran [63]. Hal yang sama
terjadi perubahan morfologi, meskipun bergeser ke suhu yang lebih tinggi, ketika
kadar air menurun [109]. Untuk pati sereal ini, maka harus
dimungkinkan untuk menentukan tingkat perlakuan panas dalam suatu proses dengan mempelajari
bentuk butiran.
10.3.2.5 Pembengkakan
Disordering dari domain kristal dalam granula pati demikian pertama
langkah dalam gelatinisasi. Metode seperti mengukur hilangnya birefringence,
DSC, atau difraksi x-ray dapat mengukur proses ini dalam satu atau lain cara.
Nilai untuk rentang suhu gelatinisasi diukur dengan metode-metode
industri), langkah pertama ini diperlukan, tetapi tidak cukup . Untuk pengembangan
sifat fungsional yang berguna, seperti kapasitas menahan air atau rheologi
properti, peristiwa datang setelah mencairnya struktur kristal adalah
yang penting. Sudah mencatat bahwa granul pati menyerap
air. Penyerapan ini menyebabkan perubahan morfologi dijelaskan dan untuk
pembengkakan besar granula pati. Pembengkakan sering diukur sebagai peningkatan volume gel, dan beberapa hasil khas diberikan pada Gambar 10.4
pembengkakan dimulai pada suhu yang sesuai dengan To
pengukuran DSC, tetapi terus temperatur yang lebih tinggi dari Tc [29]. The
© 2006 oleh Taylor & Francis Group, LLC
biasanya bertepatan (lihat Tabel 10.3). Untuk aplikasi pati (misalnya, dalam makanan
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2024 I Love Translation. All reserved.

E-mail: