5.1.1 Retinal Protein Expression and Protection—Photoreceptor cell tra terjemahan - 5.1.1 Retinal Protein Expression and Protection—Photoreceptor cell tra Bahasa Indonesia Bagaimana mengatakan

5.1.1 Retinal Protein Expression an

5.1.1 Retinal Protein Expression and Protection—Photoreceptor cell transcription and
protein markers of oxidative stress are also altered by intense light. Retinas from light-exposed
rats show an increase in heme oxygenase -1 (HO-1) mRNA and protein levels (Kutty et al.,
1995). HO-1 is a 32 kDa inducible stress protein, which converts the pro-oxidant heme to
biliverdin, ultimately forming the antioxidant bilirubin (Frei et al., 1989). Bilirubin is
oxidatively converted back into biliverdin, which can then be reconverted to bilirubin by
biliverdin reductase. Although it is normally found in low concentrations in cells, bilirubin
effectively reduces membrane lipid oxidation by this enzymatic recycling process (Sedlak et
al., 2009). Induction of HO-1 during light-induced stress, therefore, is a self protective response
resulting from a higher level of bilirubin in the retina. The fact that antioxidant pretreatment
of rats prevents HO-1 induction during intense light exposure (Kutty et al., 1995) supports the
idea that light results in an oxidative stress in the retina.
At the same time, there is a light-induced reduction in mRNA levels for interphotoreceptor cell
retinol binding protein (IRBP) (Organisciak et al., 2000). IRBP is constitutively expressed in
photoreceptors, so a decrease in its mRNA means that visual cell transcription is affected by
intense light. Decreases in the expression of several other visual cell proteins have also been
found in arrestin-KO and rhodopsin kinase-KO mice following light exposure (Choi et al.,
2001). At the protein level, intense light reduces the activity of RDH, an oxidatively sensitive
ROS enzyme, while DMTU prevents that reduction (Darrow et al., 1997). Tomita et al.
(2005) found a light dependent increase in the expression of mRNA for caspase-3, which was
inhibited by an antioxidant (PBN), but saw no increase in enzyme activity. One possible
explanation for the lack of caspase activity is covalent modification by light-induced Snitrosylation
of cysteine residues (Donovan et al., 2001). Another light-induced covalent
modification is nitrotyrosine formation. Using 2D gel electrophoresis coupled with MS and
nitrotyrosine immunoreactivity, Miyagi et al. (2002) identified the mitochondrial form of
glutamate dehydrogenase as being NO modified in both photoreceptors and RPE. Inhibition
of NOS prevents retinal light damage in mice and rats (Donovan et al., 2001; Kaldi et al.,
2003), suggesting that NO formation is also part of the damage mechanism.
Although rapid changes in the formation of reactive oxygen(s) and/or mitochondrial
metabolism can occur during light exposure, longer-term adaptive changes in retinal protein
expression also happen. For example, glutathione peroxidase (GPX) is induced in
photoreceptors following photic injury (Ohira et al., 2003) or by rearing rats in bright light
environments (Penn and Anderson, 1992). In mouse retina, the synthesis of thioredoxin, a 13
kDa protein containing reactive cysteines, is increased by intense light treatment (Tanito et
al., 2002). Gosbell et al. (2006) reported that the antioxidative enzyme GPX-1 was also upregulated
in retina by intense light. Unexpectedly, however, GPX-1 null mice incurred less
photoreceptor cell damage than did wild type animals. Although this was attributed to a
compensatory up-regulation of other antioxidative enzymes, GPX-1 deficient mice also have
shorter ROS than normal and diminished ERGs (Gosbell et al., 2006), which could contribute
to their relative lack of light damage. Enzymes that utilize GSH appear to be abundant in the
inner retinal layers, but relatively deficient in photoreceptor ROS (Atalla et al., 1998;
Organisciak et al., 1998) or only transiently induced by light (Ohira et al., 2003). In fact, based
on the immuohistological localization of GSH in the retina, it has been proposed that the
tripeptide is practically absent from rod and cone photoreceptors (Winkler 2008). If true, this
could explain why rod cells are highly vulnerable to light-induced oxidative damage while the
inner retina is remarkably resistant. Winkler (2008) also proposes that the approximate 10 day
turnover time for newly formed ROS disks is a substitute for the relative lack of antioxidant.
However, because GSH also appears to be absent from cones and they are more resistant to
light damage, the possibility exists that there are distinctly different light damage mechanisms
in rods and cones.
5.2 Neurotrophic Factors and Endogenous Retinal Mechanisms
A wide variety of neuroprotective factors reduce or prevent retinal light damage (LaVail et
al., 1992; ibid 1998) and at least some of these are up-regulated by local stress or injury
(Faktorovich et al., 1992; Cao et al., 2001). Perhaps the best studied neuroprotective protein
is bFGF. Preconditioning rats with short term bright light exposure (Liu et al., 1998; Li et al.,
2003), prior optic nerve injury (Bush and Williams, 1991), ischemic preconditioning (Casson
et al., 2003) and drugs that prevent retinal ischemia (Agarwal et al., 2002), all reduce the extent
of retinal light damage while increasing bFGF expression, or its re-localization (Kostyk et
al., 1994). As shown by Stone et al. (1999) and Walsh et al. (2001), the highest regional levels
of immunoreactive bFGF in the rat retina correlate with those areas incurring the least amount
of light damage. Surprisingly, however, intravitreal injection of bFGF in rats affected the inner
retinal layers, by causing a reduction in the ERG b-wave, not the photoreceptor specific a-wave
(Stone et al., 1999). Exogenously applied bFGF also fails to prevent photoreceptor cell light
damage in mice (LaVail et al., 1998). The reasons for this inefficacy are unknown, but
differences in the binding of bFGF to receptors and a reduced response to local injury have
been suggested (LaVail et al., 1998). Other factors, including granulocyte colony-stimulating
factor (Oishi et al., 2008) and hypoxia-induced erythropoietin (Grimm et al., 2002), are
neuroprotective in mice. In the rat light damage model, intravitreal injection of factors derived
from RPE (Cao et al., 2001) or lens epithelium (Machida et al., 2001) are effective. Irrespective
of these species differences, bFGF and ciliary neurotrophic factor (CNTF) synthesis occurs
during light exposure (Gao and Hollyfield, 1996; Walsh et al., 2001; Li et al., 2003) or after
drug treatment (Agarwal et al., 2002) and reaches a maximum 2–4 days after light onset or
local injury (Wen et al., 1997; Cao et al., 2001). Thus, to achieve neuroprotection from growth
factors during acute light exposure, pretreatment would appear to be necessary, much the same
as for antioxidants. At the same time, growth factors can also trigger receptor mediated
signaling pathways that impart long term protection.
5.2.1 bFGF Receptors and Pathways—In isolated developing photoreceptors, bFGF
prolongs cell survival (Fontaine et al., 1998), probably through a tyrosine kinase receptor
(Gospodarwicz et al., 1987). In retinal Müller cells, tyrosine kinase receptors (Tkr) are thought
to be pro-survival, while the neurotrophin receptor p75 is thought to promote cell death.
Blocking the Müller cell p75 receptor provides protection against photoreceptor light damage
and stimulates the production of bFGF, while Tkr inhibition decreases bFGF levels and
enhances light damage (Harada et al., 2000). However, p75 receptor null mice were not
protected against light damage, suggesting an alternative apoptotic pathway (Roher et al.,
2003). Exogenous bFGF applied to Müller cells induces c-fos and c-jun expression, perhaps
by activating protein kinase C, and increases the denovo synthesis of bFGF (Cao et al.,
1998). Further support for a bFGF receptor-mediated protective effect is provided by
Campochiaro et al. (1996) who reported age-related photoreceptor cell degeneration in
transgenic mice lacking functional FGF receptors. Midkine, a neurotrophic retinoic acidresponsive
gene product, provides almost as much protection against light damage as does
bFGF (Unoki et al., 1994). It is also of interest that bFGF, midkine and retinoic acid are all
formed in the retina and all affect retinal development (Unoki et al., 1994; Zhao and Barnstable,
1996; Stone et al., 1999). Thus, multiple factors elicit short term photoreceptor protection; and
multiple long term neuroprotective mechanisms, some of which involve glial cells, can foster
protection against environmental light stress or trauma.
5.2.2 Circadian Effects—While neuroprotection is often achieved by exogenous agents or
treatments, the retina has also evolved the ability to protect itself with endogenous factors that
are expressed in a circadian fashion. A diurnal response to intense light was first reported by
Duncan and O’Steen (1985), a finding subsequently confirmed by others (White and Fisher,
1987; Wiechmann and O’Steen, 1992; Bush et al., 1998; Organisciak et al., 2000). These studies all point to specific times of the day when protection against retinal light damage is
greatest and other times when light damage is enhanced. Wiechmann and O’Steen (1992) found
that repeated injections of melatonin, which is normally secreted at night, led to an increase in
retinal light damage. Bush and associates (1998) blocked the melatonin receptor with the
antagonist luzindol and found protection against light damage. Thus, the evidence indicates
that there is a melatonin dependent propensity for retinal light damage, which is receptor
mediated and which correlates with time of day. However, the identities of specific proteins
or pathways which either enhance or protect against light damage, and the timing of their
expression, are largely unknown.
The synthesis of a number of photoreceptor cell visual transduction proteins occurs in a
circadian fashion (Brann and Cohen, 1987; Bowes et al., 1988; Korenbrot and Fernald,
1989; McGinnis et al., 1992; Wiechmann and Sinacola, 1997).
0/5000
Dari: -
Ke: -
Hasil (Bahasa Indonesia) 1: [Salinan]
Disalin!
5.1.1 Retinal Protein Expression and Protection—Photoreceptor cell transcription andprotein markers of oxidative stress are also altered by intense light. Retinas from light-exposedrats show an increase in heme oxygenase -1 (HO-1) mRNA and protein levels (Kutty et al.,1995). HO-1 is a 32 kDa inducible stress protein, which converts the pro-oxidant heme tobiliverdin, ultimately forming the antioxidant bilirubin (Frei et al., 1989). Bilirubin isoxidatively converted back into biliverdin, which can then be reconverted to bilirubin bybiliverdin reductase. Although it is normally found in low concentrations in cells, bilirubineffectively reduces membrane lipid oxidation by this enzymatic recycling process (Sedlak etal., 2009). Induction of HO-1 during light-induced stress, therefore, is a self protective responseresulting from a higher level of bilirubin in the retina. The fact that antioxidant pretreatmentof rats prevents HO-1 induction during intense light exposure (Kutty et al., 1995) supports theidea that light results in an oxidative stress in the retina.At the same time, there is a light-induced reduction in mRNA levels for interphotoreceptor cellretinol binding protein (IRBP) (Organisciak et al., 2000). IRBP is constitutively expressed inphotoreceptors, so a decrease in its mRNA means that visual cell transcription is affected byintense light. Decreases in the expression of several other visual cell proteins have also beenfound in arrestin-KO and rhodopsin kinase-KO mice following light exposure (Choi et al.,2001). At the protein level, intense light reduces the activity of RDH, an oxidatively sensitiveROS enzyme, while DMTU prevents that reduction (Darrow et al., 1997). Tomita et al.(2005) found a light dependent increase in the expression of mRNA for caspase-3, which wasinhibited by an antioxidant (PBN), but saw no increase in enzyme activity. One possibleexplanation for the lack of caspase activity is covalent modification by light-induced Snitrosylationof cysteine residues (Donovan et al., 2001). Another light-induced covalentmodification is nitrotyrosine formation. Using 2D gel electrophoresis coupled with MS andnitrotyrosine immunoreactivity, Miyagi et al. (2002) identified the mitochondrial form ofglutamate dehydrogenase as being NO modified in both photoreceptors and RPE. Inhibitionof NOS prevents retinal light damage in mice and rats (Donovan et al., 2001; Kaldi et al.,2003), suggesting that NO formation is also part of the damage mechanism.Although rapid changes in the formation of reactive oxygen(s) and/or mitochondrialmetabolism can occur during light exposure, longer-term adaptive changes in retinal proteinexpression also happen. For example, glutathione peroxidase (GPX) is induced inphotoreceptors following photic injury (Ohira et al., 2003) or by rearing rats in bright lightenvironments (Penn and Anderson, 1992). In mouse retina, the synthesis of thioredoxin, a 13kDa protein containing reactive cysteines, is increased by intense light treatment (Tanito etal., 2002). Gosbell et al. (2006) reported that the antioxidative enzyme GPX-1 was also upregulatedin retina by intense light. Unexpectedly, however, GPX-1 null mice incurred lessphotoreceptor cell damage than did wild type animals. Although this was attributed to acompensatory up-regulation of other antioxidative enzymes, GPX-1 deficient mice also haveshorter ROS than normal and diminished ERGs (Gosbell et al., 2006), which could contributeto their relative lack of light damage. Enzymes that utilize GSH appear to be abundant in theinner retinal layers, but relatively deficient in photoreceptor ROS (Atalla et al., 1998;Organisciak et al., 1998) or only transiently induced by light (Ohira et al., 2003). In fact, basedon the immuohistological localization of GSH in the retina, it has been proposed that thetripeptide is practically absent from rod and cone photoreceptors (Winkler 2008). If true, thiscould explain why rod cells are highly vulnerable to light-induced oxidative damage while theinner retina is remarkably resistant. Winkler (2008) also proposes that the approximate 10 dayturnover time for newly formed ROS disks is a substitute for the relative lack of antioxidant.However, because GSH also appears to be absent from cones and they are more resistant tolight damage, the possibility exists that there are distinctly different light damage mechanismsin rods and cones.5.2 Neurotrophic Factors and Endogenous Retinal MechanismsA wide variety of neuroprotective factors reduce or prevent retinal light damage (LaVail etal., 1992; ibid 1998) and at least some of these are up-regulated by local stress or injury(Faktorovich et al., 1992; Cao et al., 2001). Perhaps the best studied neuroprotective proteinis bFGF. Preconditioning rats with short term bright light exposure (Liu et al., 1998; Li et al.,2003), prior optic nerve injury (Bush and Williams, 1991), ischemic preconditioning (Cassonet al., 2003) and drugs that prevent retinal ischemia (Agarwal et al., 2002), all reduce the extentof retinal light damage while increasing bFGF expression, or its re-localization (Kostyk etal., 1994). As shown by Stone et al. (1999) and Walsh et al. (2001), the highest regional levelsof immunoreactive bFGF in the rat retina correlate with those areas incurring the least amountof light damage. Surprisingly, however, intravitreal injection of bFGF in rats affected the innerretinal layers, by causing a reduction in the ERG b-wave, not the photoreceptor specific a-wave(Stone et al., 1999). Exogenously applied bFGF also fails to prevent photoreceptor cell lightdamage in mice (LaVail et al., 1998). The reasons for this inefficacy are unknown, butdifferences in the binding of bFGF to receptors and a reduced response to local injury havebeen suggested (LaVail et al., 1998). Other factors, including granulocyte colony-stimulatingfactor (Oishi et al., 2008) and hypoxia-induced erythropoietin (Grimm et al., 2002), areneuroprotective in mice. In the rat light damage model, intravitreal injection of factors derivedfrom RPE (Cao et al., 2001) or lens epithelium (Machida et al., 2001) are effective. Irrespectiveof these species differences, bFGF and ciliary neurotrophic factor (CNTF) synthesis occursduring light exposure (Gao and Hollyfield, 1996; Walsh et al., 2001; Li et al., 2003) or afterdrug treatment (Agarwal et al., 2002) and reaches a maximum 2–4 days after light onset orlocal injury (Wen et al., 1997; Cao et al., 2001). Thus, to achieve neuroprotection from growthfactors during acute light exposure, pretreatment would appear to be necessary, much the sameas for antioxidants. At the same time, growth factors can also trigger receptor mediatedsignaling pathways that impart long term protection.5.2.1 bFGF Receptors and Pathways—In isolated developing photoreceptors, bFGFprolongs cell survival (Fontaine et al., 1998), probably through a tyrosine kinase receptor(Gospodarwicz et al., 1987). In retinal Müller cells, tyrosine kinase receptors (Tkr) are thoughtto be pro-survival, while the neurotrophin receptor p75 is thought to promote cell death.Blocking the Müller cell p75 receptor provides protection against photoreceptor light damageand stimulates the production of bFGF, while Tkr inhibition decreases bFGF levels andenhances light damage (Harada et al., 2000). However, p75 receptor null mice were notprotected against light damage, suggesting an alternative apoptotic pathway (Roher et al.,2003). Exogenous bFGF applied to Müller cells induces c-fos and c-jun expression, perhapsby activating protein kinase C, and increases the denovo synthesis of bFGF (Cao et al.,1998). Further support for a bFGF receptor-mediated protective effect is provided byCampochiaro et al. (1996) who reported age-related photoreceptor cell degeneration intransgenic mice lacking functional FGF receptors. Midkine, a neurotrophic retinoic acidresponsivegene product, provides almost as much protection against light damage as doesbFGF (Unoki et al., 1994). It is also of interest that bFGF, midkine and retinoic acid are allformed in the retina and all affect retinal development (Unoki et al., 1994; Zhao and Barnstable,1996; Stone et al., 1999). Thus, multiple factors elicit short term photoreceptor protection; andmultiple long term neuroprotective mechanisms, some of which involve glial cells, can fosterprotection against environmental light stress or trauma.5.2.2 Circadian Effects—While neuroprotection is often achieved by exogenous agents ortreatments, the retina has also evolved the ability to protect itself with endogenous factors thatare expressed in a circadian fashion. A diurnal response to intense light was first reported byDuncan and O’Steen (1985), a finding subsequently confirmed by others (White and Fisher,1987; Wiechmann and O’Steen, 1992; Bush et al., 1998; Organisciak et al., 2000). These studies all point to specific times of the day when protection against retinal light damage isgreatest and other times when light damage is enhanced. Wiechmann and O’Steen (1992) foundthat repeated injections of melatonin, which is normally secreted at night, led to an increase inretinal light damage. Bush and associates (1998) blocked the melatonin receptor with theantagonist luzindol and found protection against light damage. Thus, the evidence indicatesthat there is a melatonin dependent propensity for retinal light damage, which is receptormediated and which correlates with time of day. However, the identities of specific proteinsor pathways which either enhance or protect against light damage, and the timing of theirexpression, are largely unknown.The synthesis of a number of photoreceptor cell visual transduction proteins occurs in acircadian fashion (Brann and Cohen, 1987; Bowes et al., 1988; Korenbrot and Fernald,1989; McGinnis et al., 1992; Wiechmann and Sinacola, 1997).
Sedang diterjemahkan, harap tunggu..
Hasil (Bahasa Indonesia) 2:[Salinan]
Disalin!
5.1.1 retina Protein Ekspresi dan sel transkripsi Perlindungan-fotoreseptor dan
protein penanda stres oksidatif juga diubah oleh cahaya yang kuat. Retina dari cahaya-terkena
tikus menunjukkan peningkatan heme oxygenase -1 (HO-1) mRNA dan tingkat protein (Kutty et al.,
1995). HO-1 adalah 32 kDa protein stres diinduksi, yang mengubah heme pro-oksidan untuk
biliverdin, akhirnya membentuk bilirubin antioksidan (Frei dkk., 1989). Bilirubin
oksidatif diubah kembali menjadi biliverdin, yang kemudian dapat dikonversi ke bilirubin oleh
reduktase biliverdin. Meskipun biasanya ditemukan dalam konsentrasi rendah di sel, bilirubin
efektif mengurangi oksidasi lipid membran dengan proses daur ulang enzimatik ini (Sedlak et
al., 2009). Induksi HO-1 selama stres ringan yang disebabkan, oleh karena itu, adalah respons pelindung diri
yang dihasilkan dari tingkat yang lebih tinggi dari bilirubin di retina. Fakta bahwa pretreatment antioksidan
tikus mencegah HO-1 induksi saat terpapar cahaya yang kuat (Kutty et al., 1995) mendukung
gagasan bahwa hasil cahaya dalam stres oksidatif pada retina.
Pada saat yang sama, ada pengurangan cahaya yang disebabkan tingkat mRNA untuk sel interphotoreceptor
protein yang mengikat retinol (IRBP) (Organisciak et al., 2000). IRBP adalah konstitutif dinyatakan dalam
fotoreseptor, sehingga penurunan yang berarti bahwa mRNA transkripsi sel visual yang dipengaruhi oleh
cahaya yang kuat. Penurunan ekspresi beberapa protein sel visual lainnya juga telah
ditemukan di arrestin-KO dan rhodopsin tikus kinase-KO setelah paparan cahaya (Choi et al.,
2001). Pada tingkat protein, cahaya yang kuat mengurangi aktivitas RDH, sebuah oksidatif sensitif
enzim ROS, sementara DMTU mencegah penurunan yang (Darrow et al., 1997). Tomita et al.
(2005) menemukan peningkatan tergantung cahaya dalam ekspresi mRNA untuk caspase-3, yang
dihambat oleh antioksidan (PBN), tapi tidak melihat peningkatan aktivitas enzim. Satu kemungkinan
penjelasan untuk kurangnya aktivitas caspase adalah kovalen modifikasi dengan Snitrosylation cahaya yang disebabkan
residu sistein (Donovan et al., 2001). Lain kovalen-diinduksi cahaya
modifikasi adalah pembentukan nitrotirosin. Menggunakan elektroforesis gel 2D ditambah dengan MS dan
nitrotirosin immunoreactivity, Miyagi et al. (2002) mengidentifikasi bentuk mitokondria dari
glutamat dehidrogenase sebagai yang NO dimodifikasi di kedua fotoreseptor dan RPE. Penghambatan
NOS mencegah kerusakan cahaya retina pada tikus dan tikus (Donovan et al, 2001;.. Kaldi et al,
2003)., menunjukkan bahwa pembentukan NO juga merupakan bagian dari mekanisme kerusakan
Meskipun perubahan yang cepat dalam pembentukan oksigen reaktif (s ) dan / atau mitokondria
metabolisme dapat terjadi saat terpapar cahaya, perubahan adaptif jangka panjang protein retina
ekspresi juga terjadi. Sebagai contoh, glutathione peroxidase (GPX) diinduksi dalam
fotoreseptor setelah cedera fotik (Ohira et al., 2003) atau dengan pemeliharaan tikus dalam cahaya terang
lingkungan (Penn dan Anderson, 1992). Di retina mouse, sintesis thioredoxin, 13
kDa protein yang mengandung sistein reaktif, meningkat dengan perlakuan cahaya yang kuat (Tanito et
al., 2002). Gosbell et al. (2006) melaporkan bahwa enzim antioksidan GPX-1 juga diregulasi
di retina oleh cahaya yang kuat. Tanpa diduga, Namun, GPX-1 tikus nol terjadi kurang
kerusakan sel fotoreseptor daripada jenis binatang liar. Meskipun ini dikaitkan dengan
up-peraturan pengganti enzim antioksidan lainnya, GPX-1 tikus kekurangan juga memiliki
ROS lebih pendek dari normal dan berkurang ERGs (Gosbell et al., 2006), yang dapat berkontribusi
kurangnya relatif mereka dari kerusakan ringan. Enzim yang memanfaatkan GSH tampak berlimpah di
lapisan retina batin, tetapi relatif kekurangan fotoreseptor ROS (Atalla et al, 1998;.
. Organisciak et al, 1998) (. Ohira et al, 2003) atau hanya transien yang disebabkan oleh cahaya. Bahkan, berdasarkan
pada lokalisasi immuohistological GSH di retina, telah diusulkan bahwa
tripeptide praktis absen dari batang dan kerucut fotoreseptor (Winkler 2008). Jika benar, ini
bisa menjelaskan mengapa sel-sel batang sangat rentan terhadap kerusakan oksidatif yang disebabkan cahaya sedangkan
retina sangat tahan. Winkler (2008) juga mengusulkan bahwa perkiraan 10 hari
waktu omset untuk yang baru terbentuk disk ROS adalah pengganti relatif kurangnya antioksidan.
Namun, karena GSH juga tampaknya absen dari kerucut dan mereka lebih tahan terhadap
kerusakan ringan, kemungkinan ada bahwa ada mekanisme kerusakan ringan jelas berbeda
dalam batang dan kerucut.
5.2 Faktor neurotrophic dan endogen retina Mekanisme
Berbagai faktor saraf mengurangi atau mencegah kerusakan cahaya retina (LaVail et
al, 1992;. ibid 1998) dan setidaknya beberapa dari ini yang diatur oleh stres lokal atau cedera
(Faktorovich et al, 1992;.. Cao et al, 2001). Mungkin protein neuroprotektif terbaik dipelajari
adalah bFGF. Preconditioning tikus dengan paparan cahaya terang jangka pendek (Liu et al, 1998;.. Li et al,
2003), sebelum cedera saraf optik (Bush dan Williams, 1991), preconditioning iskemik (Casson
et al, 2003.) dan obat-obatan yang mencegah iskemia retina (Agarwal et al., 2002), semua mengurangi tingkat
kerusakan ringan retina sambil meningkatkan ekspresi bFGF, atau re-lokalisasi (Kostyk et
al., 1994). Seperti yang ditunjukkan oleh Batu et al. (1999) dan Walsh et al. (2001), tingkat regional tertinggi
dari immunoreactive bFGF dalam retina tikus berkorelasi dengan daerah-daerah menimbulkan paling sedikit
kerusakan ringan. Anehnya, bagaimanapun, injeksi intravitreal bFGF pada tikus yang terkena batin
lapisan retina, dengan menyebabkan pengurangan ERG b-gelombang, bukan fotoreseptor spesifik gelombang
(Batu et al., 1999). Eksogen diterapkan bFGF juga gagal untuk mencegah cahaya sel fotoreseptor
kerusakan pada tikus (LaVail et al., 1998). Alasan inefficacy ini tidak diketahui, tetapi
perbedaan dalam mengikat bFGF untuk reseptor dan respon berkurang cedera lokal
telah diusulkan (LaVail et al., 1998). Faktor-faktor lain, termasuk granulosit colony-stimulating
factor (Oishi et al., 2008) dan hipoksia diinduksi erythropoietin (Grimm et al., 2002), yang
melindungi saraf pada tikus. Dalam model kerusakan ringan tikus, injeksi intravitreal faktor yang berasal
dari RPE (Cao et al., 2001) atau epitel lensa (Machida et al., 2001) yang efektif. Terlepas
dari perbedaan spesies ini, bFGF dan ciliary neurotrophic factor (CNTF) sintesis terjadi
saat terpapar cahaya (Gao dan Hollyfield, 1996; Walsh et al, 2001;.. Li et al, 2003) atau setelah
pengobatan (Agarwal et al,. 2002) dan mencapai 2-4 hari maksimal setelah onset cahaya atau
cedera lokal (Wen et al, 1997;.. Cao et al, 2001). Dengan demikian, untuk mencapai pelindung saraf dari pertumbuhan
faktor saat terpapar cahaya akut, pretreatment akan muncul menjadi perlu, sama
seperti untuk antioksidan. Pada saat yang sama, faktor pertumbuhan juga dapat memicu reseptor dimediasi
jalur sinyal yang memberi perlindungan jangka panjang.
5.2.1 bFGF Reseptor dan Persiapan-In terisolasi mengembangkan fotoreseptor, bFGF
memperpanjang kelangsungan hidup sel (Fontaine et al., 1998), mungkin melalui tirosin sebuah reseptor kinase
(Gospodarwicz et al., 1987). Dalam Sel Muller retina, reseptor tirosin kinase (TKR) dianggap
sebagai pro-hidup, sedangkan P75 reseptor neurotrophin diduga mempromosikan kematian sel.
Memblokir P75 sel reseptor Müller memberikan perlindungan terhadap fotoreseptor rusak ringan
dan merangsang produksi bFGF, sedangkan penghambatan TKR mengurangi tingkat bFGF dan
meningkatkan kerusakan ringan (Harada et al., 2000). Namun, reseptor P75 tikus nol tidak
dilindungi terhadap kerusakan ringan, menunjukkan jalur apoptosis alternatif (Roher et al.,
2003). Eksogen bFGF diterapkan pada sel-sel Muller menginduksi c-fos dan ekspresi c-Juni, mungkin
dengan mengaktifkan protein kinase C, dan meningkatkan sintesis Denovo dari bFGF (Cao et al.,
1998). Dukungan lebih lanjut untuk reseptor-dimediasi efek perlindungan bFGF disediakan oleh
Campochiaro et al. (1996) yang melaporkan degenerasi sel fotoreseptor usia terkait dalam
tikus transgenik kekurangan reseptor FGF fungsional. Midkine, yang acidresponsive retinoic neurotropik
produk gen, menyediakan hampir sama perlindungan terhadap kerusakan ringan seperti halnya
bFGF (Unoki et al., 1994). Hal ini juga menarik bahwa bFGF, midkine dan asam retinoat semua
dibentuk pada retina dan semua mempengaruhi perkembangan retina (Unoki et al, 1994;. Zhao dan Barnstable,
1996; Batu et al, 1999.). Dengan demikian, beberapa faktor menimbulkan perlindungan fotoreseptor jangka pendek; dan
mekanisme saraf jangka panjang beberapa, beberapa di antaranya melibatkan sel-sel glial, dapat mendorong
perlindungan terhadap stres cahaya lingkungan atau trauma.
5.2.2 Efek-Sementara Circadian pelindung saraf sering dicapai oleh agen eksogen atau
perawatan, retina juga berkembang kemampuan untuk melindungi sendiri dengan faktor endogen yang
disajikan secara sirkadian. Respon diurnal terhadap cahaya intens pertama kali dilaporkan oleh
Duncan dan O'Steen (1985), temuan selanjutnya dikonfirmasi oleh orang lain (Putih dan Fisher,
1987; Wiechmann dan O'Steen, 1992; Bush et al, 1998;. Organisciak et al ., 2000). Studi-studi ini semuanya menunjuk ke waktu tertentu dalam sehari ketika perlindungan terhadap kerusakan ringan retina adalah
terbesar dan waktu lain ketika kerusakan ringan ditingkatkan. Wiechmann dan O'Steen (1992) menemukan
bahwa suntikan berulang dari melatonin, yang biasanya disekresikan pada malam hari, menyebabkan peningkatan
kerusakan ringan retina. Bush dan rekan (1998) memblokir reseptor melatonin dengan
luzindol antagonis dan menemukan perlindungan terhadap kerusakan ringan. Dengan demikian, bukti-bukti menunjukkan
bahwa ada kecenderungan melatonin tergantung kerusakan ringan retina, yang merupakan reseptor
dimediasi dan yang berkorelasi dengan waktu hari. Namun, identitas protein tertentu
atau jalur yang baik meningkatkan atau melindungi terhadap kerusakan ringan, dan waktu mereka
ekspresi, sebagian besar tidak diketahui.
Sintesis dari sejumlah sel fotoreseptor protein transduksi visual yang terjadi dalam
mode sirkadian (Brann dan Cohen, 1987; Bowes et al, 1988;. Korenbrot dan Fernald,
1989;. McGinnis et al, 1992; Wiechmann dan Sinacola, 1997).
Sedang diterjemahkan, harap tunggu..
 
Bahasa lainnya
Dukungan alat penerjemahan: Afrikans, Albania, Amhara, Arab, Armenia, Azerbaijan, Bahasa Indonesia, Basque, Belanda, Belarussia, Bengali, Bosnia, Bulgaria, Burma, Cebuano, Ceko, Chichewa, China, Cina Tradisional, Denmark, Deteksi bahasa, Esperanto, Estonia, Farsi, Finlandia, Frisia, Gaelig, Gaelik Skotlandia, Galisia, Georgia, Gujarati, Hausa, Hawaii, Hindi, Hmong, Ibrani, Igbo, Inggris, Islan, Italia, Jawa, Jepang, Jerman, Kannada, Katala, Kazak, Khmer, Kinyarwanda, Kirghiz, Klingon, Korea, Korsika, Kreol Haiti, Kroat, Kurdi, Laos, Latin, Latvia, Lituania, Luksemburg, Magyar, Makedonia, Malagasi, Malayalam, Malta, Maori, Marathi, Melayu, Mongol, Nepal, Norsk, Odia (Oriya), Pashto, Polandia, Portugis, Prancis, Punjabi, Rumania, Rusia, Samoa, Serb, Sesotho, Shona, Sindhi, Sinhala, Slovakia, Slovenia, Somali, Spanyol, Sunda, Swahili, Swensk, Tagalog, Tajik, Tamil, Tatar, Telugu, Thai, Turki, Turkmen, Ukraina, Urdu, Uyghur, Uzbek, Vietnam, Wales, Xhosa, Yiddi, Yoruba, Yunani, Zulu, Bahasa terjemahan.

Copyright ©2024 I Love Translation. All reserved.

E-mail: